The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall
Abstract
:1. Introduction
2. 2D Boundary Integral Equation
3. 2D Stationary Crystallization
4. Parabolic Dendrite
5. 3D Boundary Integral Equation
6. Paraboloid of Revolution
7. Conclusions
- A new BIE for a curved solid/liquid interface propagating into a single-component supercooled melt with a solid wall of constant temperature has been derived.
- An analytical solution of this BIE for a parabolic dendrite is obtained. This solution demonstrates that melt undercooling near a solid surface can be negative when the wall reflects heat and melting occurs.
- It has been shown that the solid wall leads to a smaller driving force, which decelerates the dendrite tip motion and enlarges the crystal shape.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kurz, W.; Fisher, D.J.; Trivedi, R. Progress in modelling solidification microstructures in metals and alloys: Dendrites and cells from 1700 to 2000. Int. Mater. Rev. 2019, 64, 311–354. [Google Scholar] [CrossRef]
- Kurz, W.; Rappaz, M.; Trivedi, R. Progress in modelling solidification microstructures in metals and alloys. Part II: Dendrites from 2001 to 2018. Int. Mater. Rev. 2021, 66, 30–76. [Google Scholar] [CrossRef]
- Worster, M.G. Solidification of an alloy from a cooled boundary. J. Fluid Mech. 1986, 167, 481–501. [Google Scholar] [CrossRef]
- Wettlaufer, J.S.; Worster, M.G.; Huppert, E. The phase evolution of young sea ice. Geophys. Res. 1997, 24, 1251–1254. [Google Scholar] [CrossRef]
- Worster, M.G.; Huppert, H.E.; Sparks, R.S.J. The crystallization of lava lakes. J. Geophys. Res. 1993, 98, 15891–15901. [Google Scholar] [CrossRef]
- Makoveeva, E.V. Steady-state crystallization with a mushy layer: A test of theory with experiments. Eur. Phys. J. Spec. Top. 2023, 232, 1165–1169. [Google Scholar] [CrossRef]
- Herlach, D.; Galenko, P.; Holland-Moritz, D. Metastable Solids from Undercooled Melts; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Wettlaufer, J.S. The Stefan problem: Polar exploration and the mathematics of moving boundaries. In Die Zentralanstalt für Meteorologie und Geodynamik, 1851–2001, 150 Jahre Meteorologie und Geophysik in Osterreich; Styria Verlag: Graz, Austria, 2001; pp. 420–435. [Google Scholar]
- Rubinstein, L.I. The Stefan Problem; American Mathematical Society: Providence, RI, USA, 1971. [Google Scholar]
- Meirmanov, A.M. The Stefan Problem; De Gruyter Expositions in Mathematics; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Alexandrov, D.V.; Ivanov, A.A. The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions. J. Exper. Theor. Phys. 2009, 108, 821–829. [Google Scholar] [CrossRef]
- Lubov, B.Y. The Theory of Crystallization in Large Volumes; Nauka: Moscow, Russia, 1975. [Google Scholar]
- Alexandrov, D.V. Nucleation and evolution of spherical crystals with allowance for their unsteady-state growth rates. J. Phys. A Math. Theor. 2018, 51, 075102. [Google Scholar] [CrossRef]
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer, Vol.1, Mathematical Modelling; Wiley: Chichester, UK, 1995. [Google Scholar]
- Nash, G.E. Capillary-limited, steady state dendritic growth. Part I. Theoretical development. NRL Rep. 1974, 7679. Available online: https://apps.dtic.mil/sti/citations/AD0780781 (accessed on 1 December 2023).
- Nash, G.E.; Glicksman, M.E. Capillary-limited steady-state dendritic growth—I. Theoretical development. Acta Metall. 1974, 22, 1283–1290. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Boundary integral approach for propagating interfaces in a binary non-isothermal mixture. Physica A 2017, 469, 420–428. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Selected mode for rapidly growing needle-like dendrite controlled by heat and mass transport. Acta Mater. 2017, 137, 64–70. [Google Scholar] [CrossRef]
- Saville, D.A.; Beaghton, P.J. Growth of needle-shaped crystals in the presence of convection. Phys. Rev. A 1988, 37, 3423–3430. [Google Scholar] [CrossRef] [PubMed]
- Titova, E.A.; Alexandrov, D.V. The boundary integral equation for curved solid/liquid interfaces propagating into a binary liquid with convection. J. Phys. A Math. Theor. 2022, 55, 055701. [Google Scholar] [CrossRef]
- Ben Amar, M.; Pelcé, P. Impurity effect on dendritic growth. Phys. Rev. A 1989, 39, 4263–4269. [Google Scholar] [CrossRef] [PubMed]
- Bouissou, P.; Pelcé, P. Effect of a forced flow on dendritic growth. Phys. Rev. A 1989, 40, 6673–6680. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, D.V.; Galenko, P.K.; Herlach, D.M. Selection criterion for the growing dendritic tip in a non-isothermal binary system under forced convective flow. J. Cryst. Growth 2010, 312, 2122–2127. [Google Scholar] [CrossRef]
- Barbieri, A.; Langer, J.S. Predictions of dendritic growth rates in the linearized solvability theory. Phys. Rev. A 1989, 39, 5314–5325. [Google Scholar] [CrossRef]
- Brener, E.A.; Mel’nikov, V.I. Pattern selection in two-dimensional dendritic growth. Adv. Phys. 1991, 40, 53–97. [Google Scholar] [CrossRef]
- Brener, E.A.; Mel’nikov, V.A. Two-dimensional dendritic growth at arbitrary Peclet number. J. Phys. Fr. 1990, 51, 157–166. [Google Scholar] [CrossRef]
- Pelce, P.; Pomeau, Y. Dendrites in the small undercooling limit. Stud. Appl. Math. 1986, 74, 245–258. [Google Scholar] [CrossRef]
- Langer, J.S. Studies in the theory of interfacial stability—II. Moving symmetric model. Acta Metall. 1977, 25, 1121–1137. [Google Scholar] [CrossRef]
- Morse, P.M.; Feshbach, H. Methods of Theoretical Physics; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Langer, J.S.; Turski, L.A. Studies in the theory of interfacial stability—I. Stationary symmetric model. Acta Metall. 1977, 25, 1113–1119. [Google Scholar] [CrossRef]
- Hu, M.; Sun, C.; Fang, H.; Zhu, M. Competitive dendrite growth during directional solidification of a transparent alloy: Modeling and experiment. Eur. Phys. J. E 2020, 43, 16. [Google Scholar] [CrossRef] [PubMed]
- Kermanpur, A.; Eskandari, M.; Purmohamad, H.; Soltani, M.A.; Shateri, R. Influence of mould design on the solidification of heavy forging ingots of low alloy steels by numerical simulation. Mater. Des. 2010, 31, 1096–1104. [Google Scholar] [CrossRef]
- Abootorabi, A.; Korojy, B.; Jabbareh, M.A. Effect of mould design on the Niyama criteria during solidification of CH3C 80t ingot. Ironmak. Steelmak. 2019, 47, 722–730. [Google Scholar] [CrossRef]
- Galenko, P.K.; Danilov, D.A. Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt. Phys. Lett. A 1997, 235, 271–280. [Google Scholar] [CrossRef]
- Galenko, P.K.; Danilov, D.A. Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions. J. Cryst. Growth 1999, 197, 992–1002. [Google Scholar] [CrossRef]
- Galenko, P.K.; Danilov, D.A. Selection of the thermodynamically stable regime of rapid solidification front motion in an isothermal binary alloy. J. Cryst. Growth 2000, 216, 512–526. [Google Scholar] [CrossRef]
- Zhang, L.; Danilova, E.V.; Steinbach, I.; Medvedev, D.; Galenko, P.K. Diffuse-interface modeling of solute trapping in rapid solidification: Predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation. Acta Mater. 2013, 61, 4155–4168. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Abramova, E.V.; Danilov, D.A.; Galenko, P.K. Phase-field modeling of solute trapping: Comparative analysis of parabolic and hyperbolic models. Int. J. Mater. Res. 2010, 101, 473–479. [Google Scholar] [CrossRef]
- Kharchenko, D.; Lysenko, I.; Galenko, P.K. Fluctuation effects on pattern selection in the hyperbolic model of phase decomposition. Stoch. Differ. Equ. 2011, 97, 97–127. [Google Scholar]
- Wolff, F.; Viskanta, R. Solidification of a pure metal at a vertical wall in the presence of liquid superheat. Int. J. Heat Mass Trans. 1988, 31, 1735–1744. [Google Scholar] [CrossRef]
- Gau, C.; Viskanta, R.C. Melting and solidification of a pure metal on a vertical wall. J. Heat Transfer 1986, 108, 174–181. [Google Scholar] [CrossRef]
- Galenko, P.K.; Funke, O.; Wang, J.; Herlach, D.M. Kinetics of dendritic growth under the influence of convective flow in solidification of undercooled droplets. Mater. Sci. Eng. A 2004, 375–377, 488–492. [Google Scholar] [CrossRef]
- Roshchupkina, O.; Shevchenko, N.; Eckert, S. Observation of dendritic growth under the influence of forced convection. IOP Conf. Ser. Mater. Sci. Eng. 2015, 84, 012080. [Google Scholar] [CrossRef]
- Huppert, H.E. The fluid mechanics of solidification. J. Fluid Mech. 1990, 212, 209–240. [Google Scholar] [CrossRef]
- Chiareli, A.O.P.; Huppert, H.E.; Worster, M.G. Segregation and flow during the solidification of alloys. J. Cryst. Growth 1994, 139, 134–146. [Google Scholar] [CrossRef]
- Peppin, S.S.L.; Aussillous, P.; Huppert, H.E.; Worster, M.G. Steady-state mushy layers: Experiments and theory. J. Fluid Mech. 2007, 570, 69–77. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V.; Ivanov, A.A.; Alexandrova, I.V. Desupersaturation dynamics in solutions with applications to bovine and porcine insulin crystallization. J. Phys. A Math. Theor. 2023, 56, 455702. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Ivanov, A.A. Analysis of an integro-differential model for bulk continuous crystallization with account of impurity feeding, dissolution/growth of nuclei and removal of product crystals. Math. Meth. Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Makoveeva, E.V. Mathematical modeling of the crystal growth process in a binary system. AIP Conf. Proc. 2020, 2313, 030058. [Google Scholar]
- Nizovtseva, I.G.; Starodumov, I.O.; Pavlyuk, E.V.; Ivanov, A.A. Mathematical modeling of binary compounds with the presence of a phase transition layer. Math. Meth. Appl. Sci. 2021, 44, 12260–12270. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titova, E.A.; Alexandrov, D.V. The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall. Mathematics 2024, 12, 327. https://doi.org/10.3390/math12020327
Titova EA, Alexandrov DV. The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall. Mathematics. 2024; 12(2):327. https://doi.org/10.3390/math12020327
Chicago/Turabian StyleTitova, Ekaterina A., and Dmitri V. Alexandrov. 2024. "The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall" Mathematics 12, no. 2: 327. https://doi.org/10.3390/math12020327
APA StyleTitova, E. A., & Alexandrov, D. V. (2024). The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall. Mathematics, 12(2), 327. https://doi.org/10.3390/math12020327