Super-Resolution Processing for Multiple Aperture Antenna to Suppress Multipath
Abstract
:1. Introduction
2. Matrix Pencil Method (MPM)
2.1. Summary of MP Method
2.2. Forward-and-Backward Matrix Pencil
- (1)
- Power level: there should be only two angles of power levels above 0 dB, based on the estimated amplitude of the signals using (15).
- (2)
- Accuracy: the estimated angle difference should be less than 40% of the true value, i.e., between and .
2.3. Proposed Method of Two Stage FB MP
2.4. Summary and Discussion
3. Multipath Model and Simulation Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Skolnik, M.I. Introduction to Radar Systems, 3rd ed.; McGraw Hill: New York, NY, USA, 2005; pp. 238–246. [Google Scholar]
- Sinha, A.; Bar-Shalom, Y.; Blair, W.D.; Kirubarajan, T. Radar measurement extraction in the presence of sea-surface multi-path. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 550–567. [Google Scholar] [CrossRef]
- Sherman, S.M. Complex indicated angles applied to unresolved radar targets and multipath. IEEE Trans. Aerosp. Electron. Syst. 1971, 1, 160–170. [Google Scholar] [CrossRef]
- Nickel, U. Overview of generalized monopulse estimation. IEEE Aerosp. Electron. Syst. Mag. 2006, 21, 27–56. [Google Scholar] [CrossRef]
- Chung, M.S.; Lim, J.-S.; Park, D.C. Monopulse tracking with phased array search radar in the presence of specular reflection from sea surface. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 369–375. [Google Scholar] [CrossRef]
- Blair, W.; Brandt-Pearce, M. Statistics of monopulse measurements of Rayleigh targets in the presence of specular and diffuse multipath. In Proceedings of the 2001 IEEE Radar Conference (Cat. No. 01CH37200), Atlanta, GA, USA, 3 May 2001. [Google Scholar]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Barabell, A. Improving the resolution performance of eigenstructure-based direction-finding algorithms. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, USA, 14–16 April 1983; pp. 336–339. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Lee, C.H.; Chon, S.M.; Park, J.; Na, H.K.; Kim, S.H. Improving the tracking accuracy of a low-altitude sea target in a mul-tipath environment using adaptive beamforming techniques. J. Korean Inst. Electromagn. Eng. Sci. 2021, 32, 190–199. [Google Scholar] [CrossRef]
- Park, D.; Yang, E.; Ahn, S.; Chun, J. Adaptive beamforming for low-angle target tracking under multipath interference. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2564–2577. [Google Scholar] [CrossRef]
- Sebt, M.; Sheikhi, A.; Nayebi, M. Robust low-angle estimation by an array radar. IET Radar, Sonar Navig. 2010, 4, 780–790. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J. Double-null pattern synthesis for low-angle tracking. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology, Guilin, China, 19–21 April 2007; pp. 1–4. [Google Scholar]
- Hua, Y.; Sarkar, T. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 814–824. [Google Scholar] [CrossRef]
- Sarkar, T.; Pereira, O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propag. Mag. 1995, 37, 48–55. [Google Scholar] [CrossRef]
- Hua, Y.; Sarkar, T. Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans. Antennas Propag. 1989, 37, 229–234. [Google Scholar] [CrossRef]
- Khan, M.F. Improved Matrix Pencil Methods for Parameters Estimation of Plane Wave Signals. Ph.D. Thesis, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan, 2011. [Google Scholar]
- Greiff, C.; Giovanneschi, F.; Gonzalez-Huici, M.A. Matrix pencil method for DoA estimation with interpolated arrays. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 566–571. [Google Scholar]
- Yilmazer, N.; Sarkar, T.K.; Salazar-Palma, M. DOA Estimation using Matrix Pencil and ESPRIT methods using single and multiple snapshots. In Proceedings of the 2010 URSI International Symposium on Electromagnetic Theory, Berlin, Germany, 16–19 August 2010; pp. 215–218. [Google Scholar]
- Available online: https://www.electronicsweekly.com/news/baes-phased-array-imotr-radar-passes-object-tracking-tests-2022-04/ (accessed on 5 October 2024).
- Pillai, S.U.; Kwon, B.H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 8–15. [Google Scholar] [CrossRef]
- Hua, Y.; Sarkar, T.K. On SVD for estimating generalized eigenvalues of singular matrix pencil in noise. IEEE Trans. Signal Process. 1991, 39, 892–900. [Google Scholar] [CrossRef]
- Hua, Y.; Sarkar, T.K. Matrix pencil method and its performance. In Proceedings of the ICASSP-88. International Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA, 11–14 April 1988; Volume 4, pp. 2476–2479. [Google Scholar]
- Hua, Y.; Sarkar, T.K. Perturbation analysis of TK method for harmonic retrieval problems. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 228–240. [Google Scholar] [CrossRef]
- Mailloux, R.J. Phased Array Antenna Handbook, 3rd ed.; Artech House: London, UK, 2017. [Google Scholar]
- Whalen, J.D. Comparison of Evaporation Duct Height Measurement Methods and Their Impact on Radar Propagation Estimates. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 1998. [Google Scholar]
- Yang, Y.; Wang, X.-S. Enhanced Radar Detection in the Presence of Specular Reflection Using a Single Transmitting Antenna and Three Receiving Antennas. Remote. Sens. 2023, 15, 3204. [Google Scholar] [CrossRef]
- Blake, L. Radar Range-Performance Analysis; Artech House: Norwood, MA, USA, 1986. [Google Scholar]
Parameter | Value |
---|---|
20 | |
4 | |
Stage | Description | Related Eqs. |
---|---|---|
1 | (17) | |
(19) | ||
(16) | ||
d. Estimate angles with relatively low resolution | (14) | |
for each aperture | (18) | |
2 | (21) | |
(17) | ||
(16) | ||
d. Estimate angles with enhanced resolution | (22) | |
e. Calculate the target signals for checking the number of targets | (18) |
Equation | Output |
---|---|
Alternatively, | |
Parameter | Units | ||
---|---|---|---|
72.2 | 69.1 | - | |
Parameters | Values |
---|---|
15 m | |
Antenna boresight angle | |
Radar frequency | 10 GHz |
Polarization | Vertical |
0.4 | |
35 m | |
Signal-to-noise ratio | 40 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, E. Super-Resolution Processing for Multiple Aperture Antenna to Suppress Multipath. Mathematics 2024, 12, 3186. https://doi.org/10.3390/math12203186
Park J, Kim E. Super-Resolution Processing for Multiple Aperture Antenna to Suppress Multipath. Mathematics. 2024; 12(20):3186. https://doi.org/10.3390/math12203186
Chicago/Turabian StylePark, Jeongho, and Eunhee Kim. 2024. "Super-Resolution Processing for Multiple Aperture Antenna to Suppress Multipath" Mathematics 12, no. 20: 3186. https://doi.org/10.3390/math12203186
APA StylePark, J., & Kim, E. (2024). Super-Resolution Processing for Multiple Aperture Antenna to Suppress Multipath. Mathematics, 12(20), 3186. https://doi.org/10.3390/math12203186