A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems
Abstract
:1. Introduction
2. Preliminaries
- (i)
- nonexpansive if
- (ii)
- strictly pseudocontractive or k-strictly pseudocontractive if there exists such that
- (i)
- The mapping is demiclosed (at 0); that is, if is a sequence in C such that and , then .
- (ii)
- The fixed point set of T is closed and convex.
- (iii)
- T is Lipschitzian, i.e.,
- (i)
- , for all ;
- (ii)
- , for all and .
- (1)
- , and
- (2)
- either or .
- 1.
- There exists such that is a contraction;
- 2.
- There exist the constants , such that
3. Preparatory Lemmas
- (1)
- U is -Lipschitzian and m-strongly monotone (, );
- (2)
- V is L-Lipschitzian ()
- (3)
- T is nonexpansive with ;
- (4)
- μ and γ are two numbers satisfying the conditions
- (i)
- , and ;
- (ii)
- , for all , and ;
- (iii)
- .
4. Main Results
- (i)
- , and ;
- (ii)
- , for all , and ;
- (iii)
- .
- For , for all , our algorithm (23) yields the simpler implicit scheme
- For , for all , our algorithm (23) produces the implicit scheme
- For and , for all , our algorithm (23) reduces to the following midpoint implicit scheme
5. Conclusions
- We introduced an averaged implicit iterative algorithm, that is, algorithm (23), for finding a common solution for a fixed point problem and for a variational inequality problem in the class of k-strictly pseudocontractive mappings.
- As illustrated by Example 2, our main result (Theorem 1) extends several related results existing in the literature—mainly the ones established in Xu et al. [8], Ke and Ma [9], and Sahu et al. [11], and many other related results—from the class of nonexpansive mappings to the larger class of k-strictly pseudocontractive mappings.
- For other very recent related works that allow similar developments to the ones in the current paper, we refer the reader to Alakoya and Mewomo [12], Batra et al. [14], Eslamian and Kamandi [15], Filali et al. [16], Jolalaoso et al. [17], Mouktonglang et al. [18], Onifade et al. [44], Oyewole et al. [19], Peeyada et al. [20], Singh and Chandok [45], Tan et al. [46], Uba et al. [21], Yin et al. [22], Yu et al. [23],…
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef]
- Marino, G.; Xu, H.-K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 2007, 329, 336–346. [Google Scholar] [CrossRef]
- Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279, 372–379. [Google Scholar] [CrossRef]
- Moudafi, A. Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef]
- Xu, H.-K. Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 2004, 298, 279–291. [Google Scholar] [CrossRef]
- Moudafi, A. A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal. 2011, 74, 4083–4087. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Alghamdi, M.A.; Shahzad, N.; Xu, H.-K. The implicit midpoint rule for nonexpansive mappings. Fixed Point Theory Appl. 2014, 2014, 96. [Google Scholar] [CrossRef]
- Xu, H.-K.; Alghamdi, M.A.; Shahzad, N. The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 2015, 41. [Google Scholar] [CrossRef]
- Ke, Y.F.; Ma, C.F. The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 2015, 190. [Google Scholar] [CrossRef]
- Ceng, L.-C.; Ansari, Q.H.; Yao, J.-C. Some iterative methods for finding fixed points and for solving constrained convex minimization problems. Nonlinear Anal. 2011, 74, 5286–5302. [Google Scholar] [CrossRef]
- Sahu, D.R.; Kang, S.M.; Kumar, A.; Cho, S.Y. A general implicit iteration for finding fixed points of nonexpansive mappings. J. Nonlinear Sci. Appl. 2016, 9, 5157–5168. [Google Scholar] [CrossRef]
- Alakoya, T.O.; Mewomo, O.T. S-iteration inertial subgradient extragradient method for variational inequality and fixed point problems. Optimization 2024, 73, 1477–1517. [Google Scholar] [CrossRef]
- Ansari, Q.H.; Balooee, J.; Al-Homidan, S. An iterative method for variational inclusions and fixed points of total uniformly L-Lipschitzian mappings. Carpathian J. Math. 2023, 39, 335–348. [Google Scholar] [CrossRef]
- Batra, C.; Chugh, R.; Kumar, R.; Suwais, K.; Almanasra, S.; Mlaiki, N. Strong convergence of split equality variational inequality, variational inclusion, and multiple sets fixed point problems in Hilbert spaces with application. J. Inequal. Appl. 2024, 40, 31. [Google Scholar] [CrossRef]
- Eslamian, M.; Kamandi, A. Hierarchical variational inequality problem and split common fixed point of averaged operators. J. Comput. Appl. Math. 2024, 437, 115490. [Google Scholar] [CrossRef]
- Filali, D.; Akram, M.; Dilshad, M.; Khidir, A.A. General semi-implicit midpoint approximation for fixed point of almost contraction mapping and applications. Appl. Math. Sci. Eng. 2024, 32, 2365687. [Google Scholar] [CrossRef]
- Jolaoso, L.O.; Sunthrayuth, P.; Cholamjiak, P.; Cho, Y.J. Inertial projection and contraction methods for solving variational inequalities with applications to image restoration problems. Carpathian J. Math. 2023, 39, 683–704. [Google Scholar]
- Mouktonglang, T.; Poochinapan, K.; Suparatulatorn, R. A parallel method for common variational inclusion and common fixed point problems with applications. Carpathian J. Math. 2023, 39, 189–200. [Google Scholar] [CrossRef]
- Oyewole, O.K.; Mebawondu, A.A.; Mewomo, O.T. A strong convergence algorithm for approximating a common solution of variational inequality and fixed point problems in real Hilbert space. Stud. Univ. Babeş-Bolyai Math. 2024, 69, 183–209. [Google Scholar] [CrossRef]
- Peeyada, P.; Kitisak, P.; Cholamjiak, W.; Yambangwai, D. Two inertial projective Mann forward-backward algorithm for variational inclusion problems and application to stroke prediction. Carpathian J. Math. 2024, 40, 381–398. [Google Scholar]
- Uba, M.O.; Onyido, M.A.; Udeani, C.I.; Nwokoro, P.U. A hybrid scheme for fixed points of a countable family of generalized nonexpansive-type maps and finite families of variational inequality and equilibrium problems, with applications. Carpathian J. Math. 2023, 39, 281–292. [Google Scholar] [CrossRef]
- Yin, T.-C.; Hussain, N.; Asiri, A. A self-adaptive forward-backward-forward algorithm for solving split variational inequalities. Carpathian J. Math. 2023, 39, 553–567. [Google Scholar] [CrossRef]
- Yu, Y.L.; Zhao, Y.F.; Yin, T.-C. Convergence of extragradient-type methods for fixed point problems and quasimonotone variational inequalities. J. Nonlinear Convex Anal. 2023, 24, 2225–2237. [Google Scholar]
- Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef]
- Bethke, M. Approximation of fixed points of strictly pseudocontractive operators, Wiss. Z. Pädagog. Hochsch. "Liselotte Herrmann” Güstrow Math.-Natur. Fak 1989, 27, 263–270. [Google Scholar]
- Che, H.T.; Li, M.X.; Pan, X.T. Convergence theorems for equilibrium problems and fixed-point problems of an infinite family of ki-strictly pseudocontractive mapping in Hilbert spaces. J. Appl. Math. 2012, 2012, 416476. [Google Scholar] [CrossRef]
- Deng, L. On Chidume’s open questions. J. Math. Anal. Appl. 1993, 174, 441–449. [Google Scholar] [CrossRef]
- Göhde, D. Nichtexpansive und pseudokontraktive Abbildungen sternförmiger Mengen im Hilbertraum. Beiträge Anal. 1976, 9, 23–25. [Google Scholar]
- Johnson, G.G. Fixed points by mean value iterations. Proc. Amer. Math. Soc. 1972, 34, 193–194. [Google Scholar] [CrossRef]
- Liou, Y.-C. Computing the fixed points of strictly pseudocontractive mappings by the implicit and explicit iterations. Abstr. Appl. Anal. 2012, 2012, 315835. [Google Scholar] [CrossRef]
- Moloney, J.J. Some fixed point theorems. Glas. Mat. Ser. III 1989, 24, 59–76. [Google Scholar]
- Mukherjee, R.N.; Som, T. Construction of fixed points of strictly pseudocontractive mappings in a generalized Hilbert space and related applications. Indian J. Pure Appl. Math. 1984, 15, 1183–1189. [Google Scholar]
- Osilike, M.O.; Udomene, A. Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder-Petryshyn type. J. Math. Anal. Appl. 2001, 256, 431–445. [Google Scholar] [CrossRef]
- Schu, J. Iterative construction of fixed points of strictly pseudocontractive mappings. Appl. Anal. 1991, 40, 67–72. [Google Scholar] [CrossRef]
- Schu, J. On a theorem of C.E. Chidume concerning the iterative approximation of fixed points. Math. Nachr. 1991, 153, 313–319. [Google Scholar] [CrossRef]
- Weng, X.L. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Amer. Math. Soc. 1991, 113, 727–731. [Google Scholar] [CrossRef]
- Zhou, H. Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 2008, 69, 456–462. [Google Scholar] [CrossRef]
- Berinde, V. On a useful lemma that relates quasi-nonexpansive and demicontractive mappings in Hilbert spaces. Creat. Math. Inform. 2024, 33, 7–21. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in metric fixed point theory. In Cambridge Studies in Advanced Mathematics, 28; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Xu, H.-K. Iterative algorithms for nonlinear operators. J. London Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Dincă, G. Variational Methods and Applications; Editura Tehnică: Bucharest, Romania, 1980. (In Romanian) [Google Scholar]
- Céa, J. Lectures on Optimization-Theory and Algorithms; Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 53; Tata Institute of Fundamental Research: Bombay, India, 1978. [Google Scholar]
- Blebea, D.; Dincă, G. Remarque sur une méthode de contraction à minimiser les fonctionnelles convexes sur les espaces de Hilbert. Bull. Math. Soc. Sci. Math. R. S. Roum. (N. S.) 1979, 23, 227–229. [Google Scholar]
- Onifade, O.M.; Abass, H.A.; Narain, O.K. Self-adaptive method for solving multiple set split equality variational inequality and fixed point problems in real Hilbert spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 2024, 70, 1–22. [Google Scholar] [CrossRef]
- Singh, W.; Chandok, S. Mann-type extragradient algorithm for solving variational inequality and fixed point problems. Comput. Appl. Math. 2024, 43, 259. [Google Scholar] [CrossRef]
- Tan, H.L.; Yan, Q.; Cai, G.; Dong, Q.-L. Strong convergence theorem of a new modified Bregman extragradient method to solve fixed point problems and variational inequality problems in general reflexive Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 2024, 135, 108051. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berinde, V. A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems. Mathematics 2024, 12, 3187. https://doi.org/10.3390/math12203187
Berinde V. A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems. Mathematics. 2024; 12(20):3187. https://doi.org/10.3390/math12203187
Chicago/Turabian StyleBerinde, Vasile. 2024. "A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems" Mathematics 12, no. 20: 3187. https://doi.org/10.3390/math12203187
APA StyleBerinde, V. (2024). A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems. Mathematics, 12(20), 3187. https://doi.org/10.3390/math12203187