Self-Similar Solutions of a Multidimensional Degenerate Partial Differential Equation of the Third Order
Abstract
:1. Introduction: Notations and Definitions
1.1. Multivariable Hypergeometric Functions
1.2. Generalized Kampé de Fériet Function of Many Variables
2. System of Differential Equations
3. Self-Similar Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ryskan, A.; Arzikulov, Z.; Ergashev, T. Particular Solutions of Multidimensional Generalized Euler–Poisson–Darboux Equations of Elliptic- Hyperbolic Type. J. Math., Mech. Comp. Sci. 2024, 121, 76–88. [Google Scholar] [CrossRef]
- Berdyshev, A.S.; Ryskan, A. The Neumann and Dirichlet problems for one four-dimensional degenerate elliptic equation. Lobachevskii J. Math. 2020, 41, 1051–1066. [Google Scholar] [CrossRef]
- Horn, J. Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen. Math.Ann. 1889, 34, 544–600. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; Wiley: New York, NY, USA; Brisbane, Australia; Toronto, ON, USA, 1985. [Google Scholar]
- Chugunova, M.; Taranets, R. Mathematical Theory of Higher-Order Degenerate Evolution Models; Akademperiodyka: Kyiv, Ukraine, 2019. [Google Scholar]
- Bowen, M.; Witelski, T.P. Pressure-dipole solutions of the thin-film equation. Europ. J. Appl. Math. 2019, 30, 358–399. [Google Scholar] [CrossRef]
- Majdoub, M.; Tayachi, S. Existence and regularity of source-type self-similar solutions for stable thin-film equations. Interfaces Free Bound. 2022, 24, 431–457. [Google Scholar] [CrossRef]
- Groza, G.; Mitu, A.M.; Pop, N.; Sireteanu, T. Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler-Bernoulli beam model. An. Univ. Ovidius. Ser. Math. 2018, 26, 125–139. [Google Scholar] [CrossRef]
- Hasanov, A.; Djuraev, N. Exact Solutions of the thin beam with degrading hysteresis behavior. Lobachevskii J. Math. 2022, 43, 577–584. [Google Scholar] [CrossRef]
- Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics; Dover Publications Inc.: New York, NY, USA, 1958. [Google Scholar]
- Ruzhansky, M.; Hasanov, A. Self-similar solutions of the model degenerate partial differential equations of the second, third, and fourth order. Lobachevskii J. Math. 2020, 41, 1103–1114. [Google Scholar] [CrossRef]
- Irgashev, B.Y. On particular solutions of one equation with multiple characteristics and some properties of the fundamental solution. Ukr. Math. J. 2016, 68, 868–893. [Google Scholar] [CrossRef]
- Irgashev, B.Y. Application of hypergeometric functions to the construction of particular solutions. Complex Var. Elliptic Equ. 2023, 68, 1045–1068. [Google Scholar] [CrossRef]
- Hasanov, A.; Ruzhansky, M. Hypergeometric expansions of solutions of the degenerating model parabolic equations of the third order. Lobachevskii J. Math. 2020, 41, 27–31. [Google Scholar] [CrossRef]
- Apakov, Y.P.; Hamitov, A.A. Third boundary value problem for an equation with the third order multiple characteristics in three dimensional space. Lobachevskii J. Math. 2023, 44, 523–532. [Google Scholar] [CrossRef]
- Hasanov, A.; Yuldashev, T.K. Integral representations of partial solutions for a degenerate third-order differential equation. Lobachevskii J. Math. 2024, 45, 693–699. [Google Scholar] [CrossRef]
- Arzikulov, Z.O.; Ergashev, T.G. Some systems of PDE associated with the multiple confluent hypergeometric functions and their applications. Lobachevskii J. Math. 2024, 45, 591–603. [Google Scholar] [CrossRef]
- Hasanov, A.; Ruzhansky, M. Systems of differential equations of Gaussian hypergeometric functions in three variables and their linearly-independent solutions. Bulletin Inst. Math. 2022, 5, 55–142. [Google Scholar]
- Hasanov, A.; Ruzhansky, M. Euler-type integral representations for hypergeometric functions of three second-order variables. Bull. Inst. Math. 2019, 6, 73–223. [Google Scholar]
- Jain, R.N. The confluent hypergeometric functions of three variables. Proc. Nat. Acad. Sci. India Sect. A 1966, 36, 395–408. [Google Scholar]
- Hasanov, A. Fundamental solutions bi-axially symmetric Helmholtz equation. Complex Var. Elliptic Equ. 2007, 52, 673–683. [Google Scholar] [CrossRef]
- Hasanov, A. The solution of the Cauchy problem for generalized Euler–Poisson–Darboux equation. Int. J. Appl. Math. Stat. 2007, 8, 30–43. [Google Scholar]
- Bin-Saad, M.G.; Hasanov, A.; Turaev, M. Decomposition formulas of Kampé de Fériets double hypergeometric functions. Anal. Theory Appl. 2018, 34, 275–292. [Google Scholar]
- Choi, J.; Milovanović, G.V.; Rathie, A.K. Generalized summation formulas for the Kampé de Fériet function. Axioms 2021, 1, 318. [Google Scholar] [CrossRef]
- Verma, A.; Younis, J.; Pandey, V.K.; Aydi, H. Some summation formulas for the generalized Kampé de Fériet function. Math. Probl. Eng. 2021, 2021, 2861820. [Google Scholar] [CrossRef]
- Bezrodnykh, S.I. Analytic continuation of the Kampé de Fériet function and the general double Horn series. Int. Transforms Spec. Func. 2022, 33, 908–928. [Google Scholar] [CrossRef]
- Kim, I.; Paris, R.B.; Rathie, A.K. Some new results for the Kampé de Fériet function with an application. Symmetry 2022, 14, 2588. [Google Scholar] [CrossRef]
- Ito, R.; Kumabe, S.; Nakagawa, A.; Nemoto, Y. Kampé de Fériet hypergeometric functions over finite fields. Res. Number Theory 2023, 9, 1–27. [Google Scholar] [CrossRef]
- Komilova, N.; Hasanov, A.; Ergashev, T. Expansions of Kampé de Fériet hypergeometric functions. J. Math., Mech. Comp. Sci. 2024, 122, 48–63. [Google Scholar]
- Srivastava, H.M.; Panda, R. Some analytic or asymptotic confluent expansions for functions of several variables. Math. Comput. 1975, 29, 1115–1128. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sahai, V. On certain Kampé de Fériet-like hypergeometric matrix functions. Asian-Eur. J. Math. 2023, 16, 2350080. [Google Scholar] [CrossRef]
- Karlsson, P.W. Reduction of certain generalized Kampé de Fériet functions. Math. Scand. 1973, 32, 265–268. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryskan, A.; Arzikulov, Z.; Ergashev, T.; Berdyshev, A. Self-Similar Solutions of a Multidimensional Degenerate Partial Differential Equation of the Third Order. Mathematics 2024, 12, 3188. https://doi.org/10.3390/math12203188
Ryskan A, Arzikulov Z, Ergashev T, Berdyshev A. Self-Similar Solutions of a Multidimensional Degenerate Partial Differential Equation of the Third Order. Mathematics. 2024; 12(20):3188. https://doi.org/10.3390/math12203188
Chicago/Turabian StyleRyskan, Ainur, Zafarjon Arzikulov, Tuhtasin Ergashev, and Abdumauvlen Berdyshev. 2024. "Self-Similar Solutions of a Multidimensional Degenerate Partial Differential Equation of the Third Order" Mathematics 12, no. 20: 3188. https://doi.org/10.3390/math12203188
APA StyleRyskan, A., Arzikulov, Z., Ergashev, T., & Berdyshev, A. (2024). Self-Similar Solutions of a Multidimensional Degenerate Partial Differential Equation of the Third Order. Mathematics, 12(20), 3188. https://doi.org/10.3390/math12203188