Existence and Stability for Fractional Differential Equations with a ψ–Hilfer Fractional Derivative in the Caputo Sense
Abstract
:1. Introduction
2. Preliminaries
- 1.
- 2.
- 3.
- is relatively compact;
- 4.
- 5.
- where
- 6.
- where
- (i)
- The sequence denoted by tends toward a fixed point, , of the mapping Q, starting from an initial point within G.
- (ii)
- In the set , represents the sole fixed point of the function Q.
- (iii)
- If ,then .
3. Main Result
- (H1)
- The function maintains continuity in relation to X for a.e. , and with respect to , it is measurable on I.
- (H2)
- For a.e. and , the subsequent inequality holds:
- (H3)
- Let E be an arbitrary bounded subset of X; then, f satisfiesIf
4. Stability Analysis
- (H4)
- Let the continuous function , the continuous function and for arbitrary satisfying
- (H5)
- Assume a constant P in the interval which satisfies
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Shitikova, M.V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A review. Mech. Solids 2022, 57, 1–33. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhao, G.H. A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy. Control Eng. Pract. 2023, 133, 105451. [Google Scholar] [CrossRef]
- Jamil, A.A.; Tu, W.F.; Ali, S.W.; Terriche, Y.; Guerrero, J.M. Fractional-order PID controllers for temperature control: A review. Energies 2022, 15, 3800. [Google Scholar] [CrossRef]
- Yavuz, M.; Sene, N.; Yıldız, M. Analysis of the influences of parameters in the fractional second-grade fluid dynamics. Mathematics 2022, 10, 1125. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
- Kumar, K.; Pandey, R.K.; Sharma, S.; Xu, Y.F. Numerical scheme with convergence for a generalized time-fractional Telegraph-type equation. Numer. Methods Partial Differ. Equ. 2019, 35, 1164–1183. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; De Oliveira, E.C.D. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D.; Sajjadi, S.S.; Nieto, J.J. Analysis and some applications of a regularized ψ–Hilfer fractional derivative. J. Comput. Appl. Math. 2022, 415, 114476. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhou, Y. Mittag-Leffler–Ulam stabilities of fractional evolution equations. Appl. Math. Lett. 2012, 25, 723–728. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zhang, S.Q.; He, Y.B. Existence and stability of solution for nonlinear differential equations with ψ-Hilfer fractional derivative. Appl. Math. Lett. 2021, 121, 107457. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zhang, S.Q.; He, Y.B. Existence and stability of solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 2021, 498, 124921. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar] [CrossRef]
- Oliveira, E.C.; Sousa, J.V.C. Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef]
- Kuratowski, K. Sur les espaces complets. Fund. Math. 1930, 1, 31–39. [Google Scholar] [CrossRef]
- Banaś, J. On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carol. 1980, 21, 131–143. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Cădariu, L.; Găvruţa, L.; Găvruţa, P. Weighted space method for the stability of some nonlinear equations. Appl. Anal. Discret. Math. 2012, 6, 126–139. [Google Scholar] [CrossRef]
- Mönch, H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 1980, 4, 985–999. [Google Scholar] [CrossRef]
- Yosida, K. Functional Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Jin, Y.; Wang, L.; Cai, N.; Mu, J. Existence and Stability for Fractional Differential Equations with a ψ–Hilfer Fractional Derivative in the Caputo Sense. Mathematics 2024, 12, 3271. https://doi.org/10.3390/math12203271
He W, Jin Y, Wang L, Cai N, Mu J. Existence and Stability for Fractional Differential Equations with a ψ–Hilfer Fractional Derivative in the Caputo Sense. Mathematics. 2024; 12(20):3271. https://doi.org/10.3390/math12203271
Chicago/Turabian StyleHe, Wenchang, Yuhang Jin, Luyao Wang, Ning Cai, and Jia Mu. 2024. "Existence and Stability for Fractional Differential Equations with a ψ–Hilfer Fractional Derivative in the Caputo Sense" Mathematics 12, no. 20: 3271. https://doi.org/10.3390/math12203271
APA StyleHe, W., Jin, Y., Wang, L., Cai, N., & Mu, J. (2024). Existence and Stability for Fractional Differential Equations with a ψ–Hilfer Fractional Derivative in the Caputo Sense. Mathematics, 12(20), 3271. https://doi.org/10.3390/math12203271