Lifted Codes with Construction of Echelon-Ferrers for Constant Dimension Codes
Abstract
:1. Introduction
2. Preliminaries
2.1. Rank-Metric Codes
2.2. Ferrers Diagram Maximum Rank Distance Codes
2.3. Linkage Construction
2.4. Sub-Codes Construction
3. Main Results
Algorithm 1: Modified greedy algorithm |
3.1. Algorithm
3.2. Construction
Algorithm 2: |
Input: d Output: target vector set
|
- where
- where and
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDC | Constant dimension code |
RMC | Rank metric code |
MRD | Maximum rank distance |
RRMC | Rank-restricted RMC |
Appendix A
Identifying Vector | Dimension | Identifying Vector | Dimension | ||
---|---|---|---|---|---|
1 | 11000000110000 | 18 | 31 | 00000110011000 | 11 |
2 | 00110000110000 | 16 | 32 | 00010100100001 | 10 |
3 | 10100000101000 | 16 | 33 | 00001001100100 | 10 |
4 | 00001100110000 | 14 | 34 | 00101000001001 | 9 |
5 | 01100000011000 | 15 | 35 | 10000010100001 | 9 |
6 | 01100000100100 | 15 | 36 | 00100010001010 | 8 |
7 | 01010000101000 | 15 | 37 | 00011000000110 | 9 |
8 | 10010000100100 | 14 | 38 | 10001000000101 | 8 |
9 | 10100000010100 | 14 | 39 | 01000100010001 | 9 |
10 | 10010000011000 | 14 | 40 | 00110000000011 | 8 |
11 | 11000000001100 | 14 | 41 | 10000100001001 | 8 |
12 | 00110000001100 | 12 | 42 | 01010000000101 | 9 |
13 | 10001000100010 | 12 | 43 | 00010001100010 | 9 |
14 | 00000011110000 | 12 | 44 | 00010100001010 | 9 |
15 | 01010000010010 | 12 | 45 | 00100010010001 | 8 |
16 | 00001010101000 | 12 | 46 | 00000011001100 | 8 |
17 | 01001000010100 | 12 | 47 | 00100001100001 | 8 |
18 | 00010100010100 | 11 | 48 | 01000100000110 | 8 |
19 | 00100100100010 | 11 | 49 | 10000010000110 | 7 |
20 | 00011000010001 | 10 | 50 | 01000010001001 | 7 |
21 | 01001000100001 | 11 | 51 | 00010001001001 | 6 |
22 | 00000101101000 | 11 | 52 | 00100001000110 | 6 |
23 | 01000010100010 | 10 | 53 | 00001100000011 | 6 |
24 | 00001100001100 | 10 | 54 | 00100100000101 | 7 |
25 | 00001001011000 | 10 | 55 | 10000001010001 | 7 |
26 | 00101000010010 | 11 | 56 | 10000001001010 | 7 |
27 | 00000110100100 | 11 | 57 | 00000000111001 | 3 |
28 | 01001000001010 | 10 | 58 | 00000011000011 | 4 |
29 | 11000000000011 | 10 | 59 | 00000000110110 | 2 |
30 | 10000100010010 | 10 | 60 | 00000000001111 | 0 |
Identifying Vector | Dimension | Identifying Vector | Dimension | ||
---|---|---|---|---|---|
1 | 110000000000110000 | 22 | 43 | 010000010000100001 | 12 |
2 | 101000000000101000 | 20 | 44 | 010000100000001010 | 12 |
3 | 001100000000110000 | 20 | 45 | 010100000000000101 | 13 |
4 | 010100000000101000 | 19 | 46 | 001001000000010001 | 13 |
5 | 100100000000100100 | 18 | 47 | 000000110000001100 | 12 |
6 | 110000000000001100 | 18 | 48 | 001010000000001001 | 13 |
7 | 100100000000011000 | 18 | 49 | 000100100000010001 | 12 |
8 | 101000000000010100 | 18 | 50 | 001001000000001010 | 13 |
9 | 011000000000011000 | 19 | 51 | 000000001010101000 | 12 |
10 | 011000000000100100 | 19 | 52 | 000000000011110000 | 12 |
11 | 000011000000110000 | 18 | 53 | 100000010000000110 | 10 |
12 | 100010000000100010 | 16 | 54 | 001000000100100010 | 11 |
13 | 000110000000010100 | 16 | 55 | 000011000000000011 | 10 |
14 | 001100000000001100 | 16 | 56 | 000000000110011000 | 11 |
15 | 000010100000101000 | 16 | 57 | 001000100000000110 | 11 |
16 | 010100000000010010 | 16 | 58 | 100000001000001010 | 10 |
17 | 000000110000110000 | 16 | 59 | 100000010000010001 | 11 |
18 | 000110000000100001 | 15 | 60 | 000000101000010010 | 11 |
19 | 000001100000011000 | 15 | 61 | 000000000101101000 | 11 |
20 | 100001000000010010 | 14 | 62 | 000000001001011000 | 10 |
21 | 110000000000000011 | 14 | 63 | 000000001100001100 | 10 |
22 | 000110000000001010 | 14 | 64 | 000100010000001001 | 10 |
23 | 010001000000010100 | 15 | 65 | 100000100000001001 | 11 |
24 | 010001000000100010 | 15 | 66 | 000000100100010100 | 11 |
25 | 100001000000100001 | 14 | 67 | 000000010100010010 | 10 |
26 | 000001010000101000 | 15 | 68 | 000000000110100100 | 11 |
27 | 010010000000010001 | 14 | 69 | 000000001001100100 | 10 |
28 | 000010010000011000 | 14 | 70 | 001000010000000101 | 9 |
29 | 000100100000100010 | 14 | 71 | 000000001010010001 | 8 |
30 | 000011000000001100 | 14 | 72 | 000001001000000101 | 8 |
31 | 001010000000010010 | 15 | 73 | 000000010010001010 | 8 |
32 | 000010010000100100 | 14 | 74 | 000000110000000011 | 8 |
33 | 000001100000100100 | 15 | 75 | 000000000011001100 | 8 |
34 | 000000001100110000 | 14 | 76 | 000000001010000110 | 7 |
35 | 000101000000000110 | 12 | 77 | 000000001100000011 | 6 |
36 | 001000100000100001 | 13 | 78 | 000000100010000101 | 6 |
37 | 000000011000100010 | 12 | 79 | 000000000101010001 | 7 |
38 | 010001000000001001 | 12 | 80 | 000000000101000110 | 6 |
39 | 100010000000000101 | 12 | 81 | 000000000000111100 | 4 |
40 | 001100000000000011 | 12 | 82 | 000000000011000011 | 4 |
41 | 010010000000000110 | 13 | 83 | 000000000000110011 | 2 |
42 | 000000011000010100 | 12 | 84 | 000000000000001111 | 0 |
References
- Koetter, R.; Kschischang, F.R. Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 2008, 54, 3579–3591. [Google Scholar] [CrossRef]
- Etzion, T.; Silberstein, N. Codes and designs related to lifted MRD codes. IEEE Trans. Inf. Theory 2013, 59, 1004–1017. [Google Scholar] [CrossRef]
- Tao, F.; Kurz, S.; Liu, S. Bounds for the multilevel construction. arXiv 2020, arXiv:2011.06937. [Google Scholar]
- Heinlein, D.; Kurz, S. Coset construction for subspace codes. IEEE Trans. Inf. Theory 2017, 63, 7651–7660. [Google Scholar] [CrossRef]
- Kurz, S. The interplay of different metrics for the construction of constant dimension codes. Adv. Math. Commun. 2023, 17, 152–171. [Google Scholar] [CrossRef]
- Niu, Y.; Yue, Q.; Huang, D. New constant dimension subspace codes from generalized inserting construction. IEEE Commun. Lett. 2021, 25, 1066–1069. [Google Scholar] [CrossRef]
- Niu, Y.; Yue, Q.; Huang, D. New constant dimension subspace codes from parallel linkage construction and multilevel construction. Cryptogr. Commun. 2022, 14, 201–214. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Q.; Xie, Y.; Xu, S. Multiview latent space learning with progressively fine-tuned deep features for unsupervised domain adaptation. Inf. Sci. 2024, 662, 120223. [Google Scholar] [CrossRef]
- Heinlein, D.; Kiermaier, M.; Kurz, S.; Wassermann, A. Tables of subspace codes. arXiv 2016, arXiv:1601.02864. [Google Scholar]
- Etzion, T.; Silberstein, N. Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 2009, 55, 2909–2919. [Google Scholar] [CrossRef]
- Lao, H.; Chen, H. New constant dimension subspace codes from multilevel linkage construction. Adv. Math. Commun. 2022, 18, 956–966. [Google Scholar] [CrossRef]
- Lao, H.; Chen, H.; Tan, X. New constant dimension subspace codes from block inserting constructions. Cryptogr. Commun. 2022, 14, 87–99. [Google Scholar] [CrossRef]
- Niu, M.; Xiao, J.; Gao, Y. New constructions of constant dimension codes by improved inserting construction. Appl. Math. Comput. 2023, 446, 127885. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Zhang, Z.; Zhou, K. New Construction for Constant Dimension Subspace Codes via a Composite Structure. IEEE Commun. Lett. 2021, 25, 1422–1426. [Google Scholar] [CrossRef]
- Li, F. Construction of constant dimension subspace codes by modifying linkage construction. IEEE Trans. Inf. Theory 2020, 66, 2760–2764. [Google Scholar] [CrossRef]
- Gluesing-Luerssen, H.; Troha, C. Construction of subspace codes through linkage. Adv. Math. Commun. 2016, 10, 525–540. [Google Scholar] [CrossRef]
- Silberstein, N.; Trautmann, A.L. Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks. IEEE Trans. Inf. Theory 2015, 61, 3937–3953. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Zhang, Z. Improving the linkage construction with echelon-Ferrers for constant-dimension codes. IEEE Commun. Lett. 2020, 24, 1875–1879. [Google Scholar] [CrossRef]
- Delsarte, P. Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory A 1978, 25, 226–241. [Google Scholar] [CrossRef]
- Gabidulin, E.M. Theory of codes with maximum rank distance. Problemy Peredachi Informatsii. Probl. Peredachi Informatsii 1985, 21, 3–16. [Google Scholar]
- Berlekamp, E.R. Introduction to Coding Theory; Springer: Vienna, Austria, 1970; pp. 5–11. [Google Scholar]
- Xu, L.; Chen, H. New constant-dimension subspace codes from maximum rank distance codes. IEEE Trans. Inf. Theory 2018, 64, 6315–6319. [Google Scholar] [CrossRef]
- Cossidente, A.; Kurz, S.; Marino, G.; Pavese, F. Combining subspace codes. Adv. Math. Commun. 2023, 17, 536–550. [Google Scholar] [CrossRef]
- Kurz, S. Lifted codes and the multilevel construction for constant dimension codes. arXiv 2020, arXiv:2004.14241. [Google Scholar]
d | |||
---|---|---|---|
4 | |||
6 | |||
8 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Wang, X. Lifted Codes with Construction of Echelon-Ferrers for Constant Dimension Codes. Mathematics 2024, 12, 3270. https://doi.org/10.3390/math12203270
Niu Y, Wang X. Lifted Codes with Construction of Echelon-Ferrers for Constant Dimension Codes. Mathematics. 2024; 12(20):3270. https://doi.org/10.3390/math12203270
Chicago/Turabian StyleNiu, Yongfeng, and Xuan Wang. 2024. "Lifted Codes with Construction of Echelon-Ferrers for Constant Dimension Codes" Mathematics 12, no. 20: 3270. https://doi.org/10.3390/math12203270
APA StyleNiu, Y., & Wang, X. (2024). Lifted Codes with Construction of Echelon-Ferrers for Constant Dimension Codes. Mathematics, 12(20), 3270. https://doi.org/10.3390/math12203270