Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis
Abstract
:1. Introduction
2. Model of Antigen-Driven Lymphocyte Receptor Synthesis
2.1. Basic Model of Random Antigen Dynamics
2.2. Model of Antigen-Driven Lymphocyte Receptor Formation
2.3. Control Function for Synthesis of a Single Receptor
2.4. Control Function Accounting for the Gaussian Variability of Antigen Dynamics
3. Fitness Characterization of the Adapting Immune System
3.1. Complementarity to Antigen
3.2. Pathogen Load Control Based
4. Numerical Simulations of Immune System–Pathogen Co-Adaptation
4.1. Repertoire Synthesis for a Single Pathogen
4.2. Repertoire Synthesis for Multiple Pathogens
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ODE | Ordinary Differential Equation |
SDE | Stochastic Differential Equation |
PDE | Partial Differential Equation |
MHC | Major Histocompatibility Complex |
BCR | B-cell receptor |
TCR | T-cell receptor |
HJB | Hamilton–Jacobi–Bellman |
FKK | Feynman–Kac–Kolmogorov |
References
- Murphy, K.; Weaver, C. Janeway’s Immunobiology; Garland Science: New York, NY, USA, 2016; ISBN 9781315533247. [Google Scholar]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host Range and Emerging and Reemerging Pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Ortega, M.; Spisak, N.; Mora, T.; Walczak, A.M. Modeling and Predicting the Overlap of B- and T-Cell Receptor Repertoires in Healthy and SARS-CoV-2 Infected Individuals. PLoS Genet. 2023, 19, e1010652. [Google Scholar] [CrossRef] [PubMed]
- Zarnitsyna, V.I.; Evavold, B.D.; Schoettle, L.N.; Blattman, J.N.; Antia, R. Estimating the Diversity, Completeness, and Cross-Reactivity of the T Cell Repertoire. Front. Immunol. 2013, 4, 485. [Google Scholar] [CrossRef] [PubMed]
- Weyl, H. The Classical Groups: Their Invariants and Representations; Princeton University Press: Princeton, NJ, USA, 1946; ISBN 9780691057569. [Google Scholar]
- Mora, T.; Walczak, A.M.; Bialek, W.; Callan, C.G. Maximum Entropy Models for Antibody Diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 5405–5410. [Google Scholar] [CrossRef] [PubMed]
- Chardès, V.; Vergassola, M.; Walczak, A.M.; Mora, T. Affinity Maturation for an Optimal Balance between Long-Term Immune Coverage and Short-Term Resource Constraints. Proc. Natl. Acad. Sci. USA 2022, 119, e2113512119. [Google Scholar] [CrossRef] [PubMed]
- Puelma Touzel, M.; Walczak, A.M.; Mora, T. Inferring the Immune Response from Repertoire Sequencing. PLoS Comput. Biol. 2020, 16, e1007873. [Google Scholar] [CrossRef] [PubMed]
- Desponds, J.; Mayer, A.; Mora, T.; Walczak, A.M. Population Dynamics of Immune Repertoires. In Mathematical, Computational and Experimental T Cell Immunology; Molina-París, C., Lythe, G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 203–221. ISBN 9783030572037. [Google Scholar]
- Gaevert, J.A.; Luque Duque, D.; Lythe, G.; Molina-París, C.; Thomas, P.G. Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses. Viruses 2021, 13, 1786. [Google Scholar] [CrossRef] [PubMed]
- Boughter, C.T.; Meier-Schellersheim, M. An Integrated Approach to the Characterization of Immune Repertoires Using AIMS: An Automated Immune Molecule Separator. PLoS Comput. Biol. 2023, 19, e1011577. [Google Scholar] [CrossRef] [PubMed]
- Dessalles, R.; Pan, Y.; Xia, M.; Maestrini, D.; D’Orsogna, M.R.; Chou, T. How Naive T-Cell Clone Counts Are Shaped By Heterogeneous Thymic Output and Homeostatic Proliferation. Front. Immunol. 2022, 12, 735135. [Google Scholar] [CrossRef] [PubMed]
- Bocharov, G.A.; Grebennikov, D.S.; Savinkov, R.S. Multiphysics Modelling of Immune Processes Using Distributed Parameter Systems. Rus. J. Num. Anal. Math. Model. 2023, 38, 279–292. [Google Scholar] [CrossRef]
- Peng, S. Stochastic Hamilton–Jacobi–Bellman Equations. SIAM J. Control Optim. 1992, 30, 284–304. [Google Scholar] [CrossRef]
- Bratus, A.S. On the numerical solution of a model problem of motion control in a random environment. Space Res. 1971, 9, 527–530. [Google Scholar]
- Bratus, A.; Yegorov, I.; Yurchenko, D. Optimal Bounded Noisy Feedback Control for Damping Random Vibrations. J. Vib. Control 2018, 24, 1874–1888. [Google Scholar] [CrossRef]
- Liptser, R.S.; Shiryaev, A.N. Statistic of Random Processes; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Oksendal, B. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Bogadelnikov, I.V.; Kruger, E.A. Will Microbes Have the Last Word? Clin. Infectol. Parasitol. 2012, 2, 4–12. (In Russian) [Google Scholar]
- Matveev, A.; Pyankov, O.; Khlusevich, Y.; Tyazhelkova, O.; Emelyanova, L.; Timofeeva, A.; Shipovalov, A.; Chechushkov, A.; Zaitseva, N.; Kudrov, G.; et al. Antibodies Capable of Enhancing SARS-CoV-2 Infection Can Circulate in Patients with Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 10799. [Google Scholar] [CrossRef] [PubMed]
- Rey, F.A.; Stiasny, K.; Vaney, M.; Dellarole, M.; Heinz, F.X. The Bright and the Dark Side of Human Antibody Responses to Flaviviruses: Lessons for Vaccine Design. EMBO Rep. 2018, 19, 206–224. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.C. Partial Differential Equations, 2nd ed.; Graduate Studies in Mathematics, 19; American Mathematical Society: Providence, RI, USA, 2010; p. 749. ISBN 978-0-8218-4974-3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratus, A.S.; Bocharov, G.; Grebennikov, D. Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis. Mathematics 2024, 12, 3291. https://doi.org/10.3390/math12203291
Bratus AS, Bocharov G, Grebennikov D. Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis. Mathematics. 2024; 12(20):3291. https://doi.org/10.3390/math12203291
Chicago/Turabian StyleBratus, Alexander S., Gennady Bocharov, and Dmitry Grebennikov. 2024. "Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis" Mathematics 12, no. 20: 3291. https://doi.org/10.3390/math12203291
APA StyleBratus, A. S., Bocharov, G., & Grebennikov, D. (2024). Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis. Mathematics, 12(20), 3291. https://doi.org/10.3390/math12203291