A Long-Memory Model for Multiple Cycles with an Application to the US Stock Market
Abstract
:1. Introduction
2. The Econometric Model
3. The Test Statistic
4. Finite Sample Properties
5. An Empirical Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, C.R. Trend/Cycle Decomposition. In The New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2008. [Google Scholar] [CrossRef]
- Persons, W.M. Indices of business conditions. Rev. Econ. Stat. 1919, 1, 5–107. [Google Scholar]
- Almeida, A.; Brás, S.; Sargento, S.; Pinto, F.C. Time series big data: A survey on data stream frameworks, analysis and algorithms. J. Big Data 2023, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.M. Efficient tests of nonstationary hypotheses. J. Am. Stat. Assoc. 1994, 89, 1420–1437. [Google Scholar] [CrossRef]
- Bhargava, A. On the theory of testing for unit roots in observed time series. Rev. Econ. Stud. 1986, 52, 369–384. [Google Scholar] [CrossRef]
- Schmdit, P.; Phillips, P.C.B. LM Tests for a Unit Root in the Presence of Deterministic Trends. Oxf. Bull. Econ. Stat. 1992, 54, 257–287. [Google Scholar] [CrossRef]
- Conde-Ruiz, J.I.; García, M.; Puch, L.A.; Ruiz, J. Calendar effects in daily aggregate employment creation and destruction in Spain. SERIEs 2019, 10, 25–63. [Google Scholar] [CrossRef]
- Yaya, O.; Oghonna, A.; Furuoka, F.; Gil-Alana, L.A. A new unit root analysis for testinghysteresis in unemployment. Oxf. Bull. Econ. Stat. 2021, 83, 960–981. [Google Scholar] [CrossRef]
- Gil-Alana, L.A.; Yaya, O. Testing fractional unit roots with non-linear smooth break approximations using Fourier functions. J. Appl. Stat. 2021, 48, 2542–2559. [Google Scholar] [CrossRef]
- Cuestas, J.C.; Gil-Alana, L.A. A non-linear approach with long range dependence based on Chebyshev polynomials. Stud. Nonlinear Dyanmics Econom. 2016, 20, 57–70. [Google Scholar]
- Koumané, E.F.; Hili, O. A new time domain estimation of k-factors GARMA processes. Comptes Rendus Math. 2012, 350, 925–928. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Distributions of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–481. [Google Scholar]
- Elliot, G.; Rothenberg, T.J.; Stock, J.H. Efficient tests for an autoregressive unit root. Econometrica 1996, 64, 813–836. [Google Scholar] [CrossRef]
- Geweke, J.; Porter-Hudak, S. The estimation and application of long memory time series models. J. Time Ser. Anal. 1983, 4, 221–223. [Google Scholar] [CrossRef]
- Sowell, F. Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models. J. Econom. 1992, 53, 165–188. [Google Scholar] [CrossRef]
- Hamming, R.W. Numerical Methods for Scientists and Engineers; Dove Medical Press: Macclesfield, UK, 1973. [Google Scholar]
- Smyth, G.K. Polynomial Approximation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Bierens, H.J.; Martins, L.F. Time Varying Cointegration. Econom. Theory 2010, 26, 1453–1490. [Google Scholar] [CrossRef]
- Bierens, H.J. Testing the Unit Root with Drift Hypothesis Against Trend Stationarity with an Application to the US Price Level and Interest Rate. J. Econom. 1997, 81, 29–64. [Google Scholar] [CrossRef]
- Tomasevic, N.; Tomasevic, M.; Stanivuk, T. Regression Analysis and Approximation by Means of Chebishev Polynomials. Informatologia 2009, 42, 166–172. [Google Scholar]
- Bloomfield, P. An exponential model in the spectrum of a scalar time series. Biometrika 1973, 60, 217–226. [Google Scholar] [CrossRef]
- Gil-Alana, L.A. The use of the Bloomfield model as an approximation to ARMA processes in the context of fractional integration. Math. Comput. Model. 2004, 39, 429–436. [Google Scholar] [CrossRef]
- Granger, C.W.J. Long memory relationships and the aggregation of dynamic models. J. Econom. 1980, 14, 227–238. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Joyeux, R. An introduction to long memory time series models and fractional differencing. J. Time Ser. Anal. 1980, 1, 15–39. [Google Scholar] [CrossRef]
- Hosking, J.R. Fractional differencing. Biometrika 1981, 68, 165–176. [Google Scholar] [CrossRef]
- Gil-Alana, L.A. Testing Stochastic Cycles in Macroeconomic Time Series. J. Time Ser. Anal. 2001, 22, 411–430. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Ng, S.; Perron, P. Lag length selection and the Construction of Unit Root Tests with Good Size and Power. Econometrica 2001, 69, 1519–1554. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Perron, P. Testing for a Unit Root in Time Series Regression. Biometrica 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Ferrara, L.; Guegan, D. Forecasting with k-factor Gegenbauer processes: Theory and Applications. J. Forecast. 2001, 20, 581–601. [Google Scholar] [CrossRef]
- Giraitis, L.; Leipus, P. A generalized fractionally differencing approach in long memory modelling. Lith. Math. J. 1995, 35, 65–81. [Google Scholar] [CrossRef]
- Sadek, N.; Khotanzad, A. K-factor Gegenbauer ARMA process for network traffic simulation. Comput. Commun. 2004, 2, 963–968. [Google Scholar]
- Woodward, W.A.; Cheng, Q.C.; Ray, H.L. A k-factor Gamma long memory model. J. Time Ser. Anal. 1998, 19, 485–504. [Google Scholar] [CrossRef]
d1 | d2 | d3 | Rejection Freq. |
---|---|---|---|
0.25 | 0.25 | 0.25 | 0.889 |
0.25 | 0.25 | 0.50 | 0.947 |
0.25 | 0.25 | 0.75 | 1.000 |
0.25 | 0.50 | 0.25 | 0.799 |
0.25 | 0.50 | 0.50 | 0.845 |
0.25 | 0.50 | 0.75 | 0.945 |
0.25 | 0.75 | 0.25 | 0.904 |
0.25 | 0.75 | 0.50 | 0.967 |
0.25 | 0.75 | 0.75 | 1.000 |
0.50 | 0.25 | 0.25 | 0.866 |
0.50 | 0.25 | 0.50 | 0.923 |
0.50 | 0.25 | 0.75 | 0.988 |
0.50 | 0.50 | 0.25 | 0.777 |
0.50 | 0.50 | 0.50 | 0.814 |
0.50 | 0.50 | 0.75 | 0.908 |
0.50 | 0.75 | 0.25 | 0.890 |
0.50 | 0.75 | 0.50 | 0.923 |
0.50 | 0.75 | 0.75 | 0.998 |
0.75 | 0.25 | 0.25 | 0.815 |
0.75 | 0.25 | 0.50 | 0.901 |
0.75 | 0.25 | 0.75 | 0.945 |
0.75 | 0.50 | 0.25 | 0.119 |
0.75 | 0.50 | 0.50 | 0.807 |
0.75 | 0.50 | 0.75 | 0.833 |
0.75 | 0.75 | 0.25 | 0.812 |
0.75 | 0.75 | 0.50 | 0.865 |
0.75 | 0.75 | 0.75 | 0.939 |
d1 | d2 | d3 | Rejection Freq. |
---|---|---|---|
0.25 | 0.25 | 0.25 | 0.911 |
0.25 | 0.25 | 0.50 | 1.000 |
0.25 | 0.25 | 0.75 | 1.000 |
0.25 | 0.50 | 0.25 | 0.801 |
0.25 | 0.50 | 0.50 | 0.906 |
0.25 | 0.50 | 0.75 | 1.000 |
0.25 | 0.75 | 0.25 | 0.998 |
0.25 | 0.75 | 0.50 | 1.000 |
0.25 | 0.75 | 0.75 | 1.000 |
0.50 | 0.25 | 0.25 | 0.899 |
0.50 | 0.25 | 0.50 | 0.978 |
0.50 | 0.25 | 0.75 | 1.000 |
0.50 | 0.50 | 0.25 | 0.839 |
0.50 | 0.50 | 0.50 | 0.848 |
0.50 | 0.50 | 0.75 | 0.922 |
0.50 | 0.75 | 0.25 | 0.955 |
0.50 | 0.75 | 0.50 | 0.988 |
0.50 | 0.75 | 0.75 | 1.000 |
0.75 | 0.25 | 0.25 | 0.890 |
0.75 | 0.25 | 0.50 | 0.977 |
0.75 | 0.25 | 0.75 | 0.994 |
0.75 | 0.50 | 0.25 | 0.094 |
0.75 | 0.50 | 0.50 | 0.883 |
0.75 | 0.50 | 0.75 | 0.847 |
0.75 | 0.75 | 0.25 | 0.890 |
0.75 | 0.75 | 0.50 | 0.914 |
0.75 | 0.75 | 0.75 | 0.978 |
d1 | d2 | d3 | Rejection Freq. |
---|---|---|---|
0.25 | 0.25 | 0.25 | 0.989 |
0.25 | 0.25 | 0.50 | 1.000 |
0.25 | 0.25 | 0.75 | 1.000 |
0.25 | 0.50 | 0.25 | 0.991 |
0.25 | 0.50 | 0.50 | 0.911 |
0.25 | 0.50 | 0.75 | 1.000 |
0.25 | 0.75 | 0.25 | 1.000 |
0.25 | 0.75 | 0.50 | 1.000 |
0.25 | 0.75 | 0.75 | 1.000 |
0.50 | 0.25 | 0.25 | 0.939 |
0.50 | 0.25 | 0.50 | 1.000 |
0.50 | 0.25 | 0.75 | 1.000 |
0.50 | 0.50 | 0.25 | 0.965 |
0.50 | 0.50 | 0.50 | 0.934 |
0.50 | 0.50 | 0.75 | 0.980 |
0.50 | 0.75 | 0.25 | 0.999 |
0.50 | 0.75 | 0.50 | 1.000 |
0.50 | 0.75 | 0.75 | 1.000 |
0.75 | 0.25 | 0.25 | 0.956 |
0.75 | 0.25 | 0.50 | 1.000 |
0.75 | 0.25 | 0.75 | 0.999 |
0.75 | 0.50 | 0.25 | 0.066 |
0.75 | 0.50 | 0.50 | 0.909 |
0.75 | 0.50 | 0.75 | 0.917 |
0.75 | 0.75 | 0.25 | 0.943 |
0.75 | 0.75 | 0.50 | 0.993 |
0.75 | 0.75 | 0.75 | 1.000 |
(i) Results Based on White Noise Errors | |||
No Terms | With an Intercept | With a Time Trend | |
Original | 0.97 (0.94, 1.00) | 0.97 (0.94, 1.00) | 0.97 (0.94, 1.00) |
Logged values | 0.99 (0.96, 1.02) | 0.98 (0.96, 1.01) | 0.98 (0.96, 1.01) |
(ii) Results Based on Autocorrelated (Bloomfield) Errors | |||
No Terms | With an Intercept | With a Time Trend | |
Original | 0.95 (0.92, 0.99) | 0.95 (0.92, 1.00) | 0.95 (0.92, 1.00) |
Logged values | 0.97 (0.93, 1.02) | 0.99 (0.95, 1.04) | 0.99 (0.95, 1.04) |
(i) Results Based on White Noise Errors | |||||
D | θ1 | θ2 | θ3 | θ4 | |
Original | 0.97 (0.93, 1.01) | 1811.38 (1.92) | −1381.76 (−2.44) | 484.63 (1.67) | −335.25 (−1.72) |
Logged | 1.01 (0.98, 1.04) | 5.400 (6.81) | −0.058 (−0.12) | −0.575 (−2.39) | 1.167 (7.30) |
(ii) Results Based on Autocorrelated (Bloomfield) Errors | |||||
D | θ1 | θ2 | θ3 | θ4 | |
Original | 0.96 (0.94, 1.02) | 1043.07 (1.59) | −702.52 (−1.93) | 307.28 (1.48) | −185.24 (−1.32) |
Logged | 1.00 (0.97, 1.04) | 0.915 (6.81) | −3.429 (−4.32) | 1.096 (2.77) | 0.047 (0.17) |
(1 − L) Data | (1 − L) Log Data | ||||
---|---|---|---|---|---|
j | T/j | Value at Periodogram | J | T/j | Value at Periodogram |
794 | 3.53 | 1448.09 | 871 | 3.22 | 0.000642 |
998 | 2.81 | 1082.75 | 607 | 4.62 | 0.000520 |
274 | 10.24 | 1076.58 | 242 | 11.60 | 0.000493 |
170 | 16.51 | 1013.94 | 920 | 3.05 | 0.000458 |
814 | 3.45 | 990.76 | 679 | 4.13 | 0.000454 |
608 | 4.61 | 916.17 | 170 | 16.51 | 0.000639 |
(1 − L) Data | (1 − L) Log Data | ||||
---|---|---|---|---|---|
j | T/j | Value at Periodogram | J | T/j | Value at Periodogram |
75 | 37.44 | 575.65 | 110 | 25.52 | 0.000248 |
15 | 187.20 | 485.48 | 16 | 175.50 | 0.000247 |
107 | 26.25 | 469.23 | 50 | 56.16 | 0.000239 |
110 | 25.52 | 465.70 | 70 | 40.11 | 0.000226 |
j1 | j2 | j3 | d1 | d2 | d3 | |
---|---|---|---|---|---|---|
White noise | 602 (4.66) | 240 (11.70) | 14 (200.57) | 0.09 (0.02, 1.17) | 0.06 (0.01, 0.09) | 0.13 (0.11, 0.14) |
Bloomfield | 601 (4.67) | 241 (11.65) | 14 (200.57) | 0.06 (−0.01, 1.17) | 0.07 (0.02, 0.10) | 0.05 (−0.02, 0.10) |
j1 | j2 | j3 | d1 | d2 | d3 | |
---|---|---|---|---|---|---|
White noise | 600 (4.69) | 236 (11.89) | 13 (216.00) | 0.07 (−0.01, 0.14) | 0.04 (−0.05, 0.08) | 0.12 (0.05, 0.16) |
Bloomfield | 609 (4.61) | 238 (11.78) | 14 (200.57) | 0.05 (−0.02, 0.19) | 0.03 (−0.03, 0.07) | 0.11 (0.04, 0.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caporale, G.M.; Gil-Alana, L.A. A Long-Memory Model for Multiple Cycles with an Application to the US Stock Market. Mathematics 2024, 12, 3487. https://doi.org/10.3390/math12223487
Caporale GM, Gil-Alana LA. A Long-Memory Model for Multiple Cycles with an Application to the US Stock Market. Mathematics. 2024; 12(22):3487. https://doi.org/10.3390/math12223487
Chicago/Turabian StyleCaporale, Guglielmo Maria, and Luis Alberiko Gil-Alana. 2024. "A Long-Memory Model for Multiple Cycles with an Application to the US Stock Market" Mathematics 12, no. 22: 3487. https://doi.org/10.3390/math12223487
APA StyleCaporale, G. M., & Gil-Alana, L. A. (2024). A Long-Memory Model for Multiple Cycles with an Application to the US Stock Market. Mathematics, 12(22), 3487. https://doi.org/10.3390/math12223487