Fast Prediction of Characteristics in Wound Rotor Synchronous Condenser Using Subdomain Modeling
Abstract
:1. Introduction
2. Subdomain Modeling
2.1. Governing Partial Differential Equations (PDEs)
- The end effects are ignored;
- The problem is two-dimensional (2-D) in polar coordinates;
- Magnetic vector potential A, current density J, and magnetic flux density vector B have the following non-zero components: ; ; ;
- The core materials have infinite permeability.
2.2. General Solutions
2.3. Matrix Representation and Solving Electromagnetic Quantities
2.4. Compounding Curve
- Transforming phase quantities (flux, voltage, and current) obtained from subdomain modeling into the dq-frame under current excitation.
- Deriving and transforming self- and mutual inductances into the dq-frame.
- Building and solving a d-axis current function with a reactive power of zero from the voltage and power equations in the dq-frame.
3. FEM Simulation Comparison
4. Conclusions
- Nonlinear magnetic material characteristics;
- Deriving leading and lagging compounding curves for power factor;
- Optimization techniques for a more efficient WRSC design;
- Experimental verification of the subdomain method on a test bench.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Sajjad, H.; Si, M.; Majid, F.; Aaron, Z.; Behrooz, B. Virtual Synchronous Generator Versus Synchronous Condensers: An Electromagnetic Transient Simulation based Comparison. CIGRE Sci. Eng. 2022, 24, 2022. [Google Scholar]
- Cho, H.W.; Bang, T.K.; Lee, J.I.; Shin, K.H.; Lee, H.S.; Hur, J.S.; Haran, K.S. Design and Preliminary Experiments of a Rotating Armature Partial Superconducting Air-Core Generator. IEEE Trans. Appl. Supercond. 2022, 32, 5202505. [Google Scholar] [CrossRef]
- Soleimani, H.; Habibi, D.; Ghahramani, M.; Strengthening, A.A. Power Systems for Net Zero: A Review of the Role of Synchronous Condensers and Emerging Challenges. Energies 2024, 17, 3291. [Google Scholar] [CrossRef]
- Nedd, M.; Booth, C.; Bell, K. Potential Solutions to the Challenges of Low Inertia Power Systems with a Case Study Concerning Synchronous Condensers. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017. [Google Scholar]
- Hadavi, S.; Saunderson, J.; Sani, A.M.; Bahrani, B. A Planning Method for Synchronous Condensers in Weak Grids Using Semi-Definite Optimization. IEEE Trans. Power Syst. 2023, 38, 1632–1641. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Yang, G.; Nielsen, A.H.; Jensen, P.H. Combination of Synchronous Condenser and Synthetic Inertia for Frequency Stability Enhancement in Low-Inertia Systems. IEEE Trans. Sustain. Energy 2019, 10, 997–1005. [Google Scholar] [CrossRef]
- Xu, G.; Yuan, Z.; Zhu, X.; Hu, P.; Liu, W.; Li, W.; Zhan, Y.; Zhao, H. Influence of Rotor Damping Bars on Rotor Temperature Rise of Synchronous Condenser After Single-Phase Short-Circuit Fault. IEEE Trans. Ind. Appl. 2023, 59, 5832–5841. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, T.; Cai, D.; Chen, R. Research on Reactive Power Optimization of Synchronous Condensers in HVDC Transmission Based on Reactive Power Conversion Factor. Energies 2024, 17, 4294. [Google Scholar] [CrossRef]
- Teleke, S.; Abdulahovic, T.; Thiringer, T.; Svensson, J. Dynamic Performance Comparison of Synchronous Condenser and SVC. IEEE Trans. Power Deliv. 2008, 23, 1606–1612. [Google Scholar] [CrossRef]
- Stein, J. Turbine-Generator Topics for Power Plant Engineers; EPRI: Palo Alto, CA, USA, 2014. [Google Scholar]
- Marken, P.E.; Depoian, A.C.; Skliutas, J.; Verrier, M. Modern Synchronous Condenser Performance Considerations. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar]
- Kim, S.-M.; Kim, T.-S.; Jung, W.-S.; Nguyen, M.-D.; Kim, Y.-J.; Shin, K.-H.; Choi, J.-Y. Electromagnetic analysis of permanent magnet-assisted synchronous reluctance motor based on magnetic equivalent circuit. AIP Adv. 2024, 14, 025229. [Google Scholar] [CrossRef]
- Lubin, T.; Mezani, S.; Rezzoug, A. 2-D Exact Analytical Model for Surface-Mounted Permanent-Magnet Motors with Semi-Closed Slots. Magnetics. IEEE Trans. Magn. 2011, 47, 479–492. [Google Scholar] [CrossRef]
- Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A. Magnetic Saturation in Semi-Analytical Harmonic Modeling for Electric Machine Analysis. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Shin, K.-H.; Park, H.-I.; Cho, H.-W.; Choi, J.-Y. Analytical Calculation and Experimental Verification of Cogging Torque and Optimal Point in Permanent Magnet Synchronous Motors. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Nguyen, M.-D.; Kim, S.-M.; Shin, H.-S.; Shin, K.-H.; Phung, A.-T.; Choi, J.-Y. Maximizing the output power of magnetically geared generator in low-speed applications using subdomain modeling and particle swarm optimization. AIP Adv. 2024, 14, 025117. [Google Scholar] [CrossRef]
- Nguyen, M.-D.; Jung, W.-S.; Hoang, D.-T.; Kim, Y.-J.; Shin, K.-H.; Choi, J.-Y. Fast Analysis and Optimization of a Magnetic Gear Based on Subdomain Modeling. Mathematics 2024, 12, 2922. [Google Scholar] [CrossRef]
- Hoang, D.-T.; Nguyen, M.-D.; Woo, J.-H.; Shin, H.-S.; Shin, K.-H.; Phung, A.-T.; Choi, J.-Y. Volume optimization of high-speed surface-mounted permanent magnet synchronous motor based on sequential quadratic programming technique and analytical solution. AIP Adv. 2024, 14, 025319. [Google Scholar] [CrossRef]
- Nguyen, M.-D.; Kim, S.-M.; Lee, J.-I.; Shin, H.-S.; Lee, Y.-K.; Lee, H.-K.; Shin, K.-H.; Kim, Y.-J.; Phung, A.-T.; Choi, J.-Y. Prediction of Stress and Deformation Caused by Magnetic Attraction Force in Modulation Elements in a Magnetically Geared Machine Using Subdomain Modeling. Machines 2023, 11, 887. [Google Scholar] [CrossRef]
- Nguyen, M.-D.; Woo, J.-H.; Shin, H.-S.; Lee, Y.-K.; Lee, H.-K.; Shin, K.-H.; Phung, A.-T.; Choi, J.-Y. Thermal analysis and experimental verification of permanent magnet synchronous motor by combining lumped-parameter thermal networks with analytical method. AIP Adv. 2023, 13, 025140. [Google Scholar] [CrossRef]
- Nguyen, M.-D.; Hoang, D.-T.; Kim, S.-M.; Jung, W.-S.; Shin, K.-H.; Kim, Y.-J.; Choi, J.-Y. Nonlinear Modeling and Analysis Considering Coupling Stator Flux of Wound-Rotor Synchronous Motors. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–7. [Google Scholar] [CrossRef]
Mode | Power Factor | P | Q |
---|---|---|---|
Motor | Lagging | >0 | >0 |
Motor | Leading | >0 | <0 |
Generator | Lagging | <0 | >0 |
Generator | Leading | <0 | <0 |
Quantity | Symbol | Unit | Value |
---|---|---|---|
Inner rotor slot radius | mm | 269.50 | |
Outer rotor radius | mm | 425.25 | |
Inner stator slot radius | mm | 525.25 | |
Outer stator slot radius | mm | 700.50 | |
Outer stator radius | mm | 1119.50 | |
Stack length | mm | 6402.40 | |
Vacuum permeability | |||
Rotor slot number | - | 32 | |
Stator slot number | - | 42 | |
Rotor slot pitch ratio | rad | 4.64 | |
Rotor opening slot pitch ratio | rad | 4.64 | |
Stator opening slot pitch ratio | rad | 0.46 | |
Stator slot pitch ratio | rad | 0.46 | |
Rotor slot winding turn | - | 5/7 * | |
Stator slot winding turn | - | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.-D.; Kim, T.-S.; Shin, K.-H.; Jang, G.-H.; Choi, J.-Y. Fast Prediction of Characteristics in Wound Rotor Synchronous Condenser Using Subdomain Modeling. Mathematics 2024, 12, 3526. https://doi.org/10.3390/math12223526
Nguyen M-D, Kim T-S, Shin K-H, Jang G-H, Choi J-Y. Fast Prediction of Characteristics in Wound Rotor Synchronous Condenser Using Subdomain Modeling. Mathematics. 2024; 12(22):3526. https://doi.org/10.3390/math12223526
Chicago/Turabian StyleNguyen, Manh-Dung, Tae-Seong Kim, Kyung-Hun Shin, Gang-Hyeon Jang, and Jang-Young Choi. 2024. "Fast Prediction of Characteristics in Wound Rotor Synchronous Condenser Using Subdomain Modeling" Mathematics 12, no. 22: 3526. https://doi.org/10.3390/math12223526
APA StyleNguyen, M. -D., Kim, T. -S., Shin, K. -H., Jang, G. -H., & Choi, J. -Y. (2024). Fast Prediction of Characteristics in Wound Rotor Synchronous Condenser Using Subdomain Modeling. Mathematics, 12(22), 3526. https://doi.org/10.3390/math12223526