Nonlinear Analysis of the Multi-Layered Nanoplates
Abstract
:1. Introduction
2. The Governing Equations
3. Numerical Solution Method
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gupta, R.; Kumar, A.; Biswas, A.; Singh, R.; Gehlot, A.; Akram, S.V.; Verma, A.S. Advances in micro and nano-engineered materials for high-value capacitors for miniaturized electronics. J. Energy Storage 2022, 55, 105591. [Google Scholar] [CrossRef]
- Manolis, G.D.; Dineva, P.S.; Rangelov, T.; Sfyris, D. Mechanical models and numerical simulations in nanomechanics: A review across the scales. Eng. Anal. Bound. Elem. 2021, 128, 149–170. [Google Scholar] [CrossRef]
- Schiavo, L.; Cammarano, A.; Carotenuto, G.; Longo, A.; Palomba, M.; Nicolais, L. An overview of the advanced nanomaterials science. Inorganica Chim. Acta 2024, 559, 121802. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Tawale, J.S.; Verma, R.; Agarwal, D.; Sharma, C.; Kumar, A.; Gupta, M.K. Morphological evolution driven semiconducting nanostructures for emerging solar, biological and nanogenerator applications. Mater. Adv. 2022, 3, 8030–8062. [Google Scholar] [CrossRef]
- Yusaf, T.; Mahamude, A.S.; Farhana, K.; Harun, W.S.; Kadirgama, K.; Ramasamy, D.; Kamarulzaman, M.K.; Subramonian, S.; Hall, S.; Dhahad, H.A. A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability 2022, 14, 12336. [Google Scholar] [CrossRef]
- Roudbari, M.A.; Jorshari, T.D.; Lü, C.; Ansari, R.; Kouzani, A.Z.; Amabili, M. A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Walled Struct. 2022, 170, 108562. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [Google Scholar] [CrossRef]
- Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 2002, 39, 2731–2743. [Google Scholar] [CrossRef]
- Lam, D.C.; Yang, F.; Chong, A.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2003, 51, 1477–1508. [Google Scholar] [CrossRef]
- Zhu, X.; Li, L. Closed form solution for a nonlocal strain gradient rod in tension. Int. J. Eng. Sci. 2017, 119, 16–28. [Google Scholar] [CrossRef]
- Mindlin, R.D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 1964, 16, 51–78. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Yu, D.; Ma, Y.; Wang, Y.; Jiang, Y.; Hu, W.; Tang, C.; Gao, Y.; Luo, K.; et al. Ultrahard nanotwinned cubic boron nitride. Nature 2013, 493, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.W.; Zhang, G.; Reddy, J.N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 2015, 78, 298–313. [Google Scholar] [CrossRef]
- Trabelssi, M.; El-Borgi, S.; Friswell, M.I. Application of nonlocal strain gradient theory for the analysis of bandgap formation in metamaterial nanobeams. Appl. Math. Model. 2024, 127, 281–296. [Google Scholar] [CrossRef]
- Sadeghian, M.; Jamil, A.; Palevicius, A.; Janusas, G.; Naginevicius, V. The Nonlinear Bending of Sector Nanoplate via Higher-Order Shear Deformation Theory and Nonlocal Strain Gradient Theory. Mathematics 2024, 12, 1134. [Google Scholar] [CrossRef]
- Sadeghian, M.; Palevicius, A.; Janusas, G. Nonlocal Strain Gradient Model for the Nonlinear Static Analysis of a Circular/Annular Nanoplate. Micromachines 2023, 14, 1052. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Jangid, K.; Mukhopadhyay, S. Implementation of Legendre wavelet method for the size dependent bending analysis of nano beam resonator under nonlocal strain gradient theory. Comput. Math. Appl. 2024, 153, 94–107. [Google Scholar] [CrossRef]
- Xu, L.L.; Zheng, Y.F.; Chen, C.P. Nonlinear statics of magneto-electro-elastic nanoplates considering flexomagnetoelectric effect based on nonlocal strain gradient theory. Thin-Walled Struct. 2024, 201, 111974. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Shao, Z.; Ademiloye, A.S.; Yang, D.; Xiang, P.; Xianbiao, W. A size-dependent meshfree model based on nonlocal strain gradient theory for trigonometric functionally graded nanoplates on variable elastic foundations. Structures 2024, 69, 107480. [Google Scholar] [CrossRef]
- Gui, Y.; Wu, R. Buckling analysis of embedded thermo-magneto-electro-elastic nano cylindrical shell subjected to axial load with nonlocal strain gradient theory. Mech. Res. Commun. 2023, 128, 104043. [Google Scholar] [CrossRef]
- Lu, L.; Guo, X.; Zhao, J. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl. Math. Model. 2019, 68, 583–602. [Google Scholar] [CrossRef]
- Arefi, M.; Kiani, M.; Rabczuk, T. Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Compos. Part B Eng. 2019, 168, 320–333. [Google Scholar] [CrossRef]
- Farajpour, A.; Yazdi, M.R.H.; Rastgoo, A.; Mohammadi, M. A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 2016, 227, 1849–1867. [Google Scholar] [CrossRef]
- Nematollahi, M.S.; Mohammadi, H. Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory. Int. J. Mech. Sci. 2019, 156, 31–45. [Google Scholar] [CrossRef]
- Thai, C.H.; Hung, P.T.; Nguyen-Xuan, H.; Phung-Van, P. A size-dependent meshfree approach for magneto-electro-elastic functionally graded nanoplates based on nonlocal strain gradient theory. Eng. Struct. 2023, 292, 116521. [Google Scholar] [CrossRef]
- Thai, C.H.; Fereira, A.M.J.; Nguyen-Xuan, H.; Hung, P.T.; Phung-Van, P. A nonlocal strain gradient isogeometric model for free vibration analysis of magneto-electro-elastic functionally graded nanoplates. Compos. Struct. 2023, 316, 117005. [Google Scholar] [CrossRef]
- Alghanmi, R.A. Nonlocal Strain Gradient Theory for the Bending of Functionally Graded Porous Nanoplates. Materials 2022, 15, 8601. [Google Scholar] [CrossRef]
- Siddique, M.U.M.; Nazmul, I.M. Static bending analysis of BDFG nanobeams by nonlocal couple stress theory and nonlocal strain gradient theory. Forces Mech. 2024, 17, 100289. [Google Scholar] [CrossRef]
- Phung-Van, P.; Hung, P.T.; Nguyen-Xuan, H.; Thai, C.H. Small scale analysis of porosity-dependent functionally graded triply periodic minimal surface nanoplates using nonlocal strain gradient theory. Appl. Math. Model. 2024, 127, 439–453. [Google Scholar] [CrossRef]
- Liu, L.; Zhong, X.; Liao, S. Accurate solutions of a thin rectangular plate deflection under large uniform loading. Appl. Math. Model. 2023, 123, 241–258. [Google Scholar] [CrossRef]
- Gao, F.; Liao, W.-H.; Wu, X. Being gradually softened approach for solving large deflection of cantilever beam subjected to distributed and tip loads. Mech. Mach. Theory 2022, 174, 104879. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J. Analytical solutions of bending analysis and vibration of rectangular nano laminates with surface effects. Appl. Math. Model. 2022, 110, 663–673. [Google Scholar] [CrossRef]
- Krysko, V.A.; Awrejcewicz, J.; Kalutsky, L.A.; Krysko, V.A. Quantification of various reduced order modelling computational methods to study deflection of size-dependent plates. Comput. Math. Appl. 2023, 133, 61–84. [Google Scholar] [CrossRef]
- Al Muhammadi, M.F.S.; Al Mukahal, F.H.H.; Sobhy, M. A Higher-Order Theory for Nonlinear Dynamic of an FG Porous Piezoelectric Microtube Exposed to a Periodic Load. Mathematics 2024, 12, 3422. [Google Scholar] [CrossRef]
- Sadeghian, M.; Pilkauskas, K.; Palevicius, P.; Ragulskiene, J.; Janusas, G.; Dorosevas, V.; Palevicius, A. A Nonlinear Damper with Dynamic Load and an Elastic Slit Membrane: Modeling and Interaction Analysis. Appl. Sci. 2024, 14, 7663. [Google Scholar] [CrossRef]
- Cong, P.H.; Duc, N.D. Effect of nonlocal parameters and Kerr foundation on nonlinear static and dynamic stability of micro/nano plate with graphene platelet reinforcement. Thin-Walled Struct. 2023, 182, 110146. [Google Scholar] [CrossRef]
- Wu, J.; Song, L.; Huang, K. Nonlinear static behaviors of nonlocal nanobeams incorporating longitudinal linear temperature gradient. Int. J. Therm. Sci. 2025, 208, 109421. [Google Scholar] [CrossRef]
- Shan, L.; Xiao, G.; Li, A.; Zhou, S.; Wang, L.; Su, W.; Liu, Y.; Yang, L.; Song, X. Nonlinear forced vibration of the FGM piezoelectric microbeam with flexoelectric effect. Alex. Eng. J. 2025, 110, 386–399. [Google Scholar] [CrossRef]
- Phuc, P.Q.; Van Dong, P.; Hai, N.T.; Zenkour, A.M.; Thien, L.G. The application of novel shear deformation theory and nonlocal elasticity theory to study the mechanical response of composite nanoplates. Compos. Struct. 2025, 352, 118646. [Google Scholar] [CrossRef]
- Altenbach, H.; Meenen, J. Single Layer Modelling and Effective Stiffness Estimations of Laminated Plates. In Modern Trends in Composite Laminates Mechanics. International Centre for Mechanical Sciences; Altenbach, H., Becker, W., Eds.; Springer: Vienna, Austria, 2003; Volume 448, pp. 1–68. [Google Scholar] [CrossRef]
- Sadeghian, M.; Palevicius, A.; Janusas, G. Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model. Micromachines 2023, 14, 1790. [Google Scholar]
- Jomehzadeh, E.; Saidi, A.R. A study on large amplitude vibration of multilayered graphene sheets. Comput. Mater. Sci. 2011, 50, 1043–1051. [Google Scholar] [CrossRef]
- Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 745–752. [Google Scholar] [CrossRef]
- Reissner, E. On Tranverse Bending of Plates, Including the Effect of Transverse Shear Deformation. Int. J. Solids Struct. 1975, 11, 569–573. [Google Scholar] [CrossRef]
- Touratier, M. An efficient standard plate theory. Int. J. Eng. Sci. 1991, 29, 901–916. [Google Scholar] [CrossRef]
- Soldatos, K. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 1992, 94, 195–220. [Google Scholar] [CrossRef]
- Aydogdu, M. A new shear deformation theory for laminated composite plates. Compos. Struct. 2009, 89, 94–101. [Google Scholar] [CrossRef]
- Mantari, J.; Oktem, A.; Soares, C.G. A new higher order shear deformation theory for sandwich and composite laminated plates. Compos. Part B Eng. 2012, 43, 1489–1499. [Google Scholar] [CrossRef]
- Li, Q.; Wu, D.; Chen, X.; Liu, L.; Yu, Y.; Gao, W. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. Int. J. Mech. Sci. 2018, 148, 596–610. [Google Scholar] [CrossRef]
- Reddy, J.N. Energy Principles and Variational Methods in Applied Mechanics, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kerr, A.D.; Alexander, H. An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate. Acta Mech. 1968, 6, 180–196. [Google Scholar] [CrossRef]
- Shu, C. Differential Quadrature and Its Application in Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Bellman, R.; Casti, J. Differential quadrature and long-term integration. J. Math. Anal. Appl. 1971, 34, 235–238. [Google Scholar] [CrossRef]
- Altekin, M.; Yükseler, R.F. Large Deflection Analysis of Clamped Circular Plates. In Proceedings of the World Congress on Engineering (WCE 2011), London, UK, 6–8 July 2011. [Google Scholar]
- Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells, 2nd ed.; McGraw-Hill New York: New York, NY, USA, 1959. [Google Scholar]
- Szilard, R. Theory and Analysis of Plates: Classical and Numerical Methods; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1974; p. 728. [Google Scholar]
- Harik, I.E. Analytical Solution to Orthotropic Sector. J. Eng. Mech. 1984, 110, 554–568. [Google Scholar] [CrossRef]
- Farajpour, A.; Mohammadi, M.; Shahidi, A.R.; Mahzoon, M. Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Phys. E Low-Dimens. Syst. Nanostruct. 2011, 43, 1820–1825. [Google Scholar] [CrossRef]
Model | Function |
---|---|
Ambartsumian [40] | |
Reddy [43] | |
Reissner [44] | |
Touratier [45] | |
Soldatos [46] | |
Aydogdu [47] | |
Mantari [48] |
q* | Ref. [54] | Ref. [55] | Ref. [56] | Present (g1) | Present (g2) | Present (g3) | Present (g4) | Present (g5) |
---|---|---|---|---|---|---|---|---|
0.0001 | 0.1678 | 0.1687 | 0.1706 | 0.1732 | 0.1801 | 0.1793 | 0.1789 | 0.1801 |
0.0003 | 0.4583 | 0.4655 | 0.5119 | 0.471 | 0.4863 | 0.4843 | 0.4835 | 0.4863 |
0.001 | 1.0509 | 1.0937 | 1.7069 | 1.0708 | 1.0929 | 1.0899 | 1.0887 | 1.0929 |
[57] | Present Study | |
---|---|---|
0.25 | 2.84 | 2.85 |
0.5 | 1.41 | 1.45 |
0.75 | 0.1 | 0.093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghian, M.; Palevicius, A.; Griskevicius, P.; Janusas, G. Nonlinear Analysis of the Multi-Layered Nanoplates. Mathematics 2024, 12, 3545. https://doi.org/10.3390/math12223545
Sadeghian M, Palevicius A, Griskevicius P, Janusas G. Nonlinear Analysis of the Multi-Layered Nanoplates. Mathematics. 2024; 12(22):3545. https://doi.org/10.3390/math12223545
Chicago/Turabian StyleSadeghian, Mostafa, Arvydas Palevicius, Paulius Griskevicius, and Giedrius Janusas. 2024. "Nonlinear Analysis of the Multi-Layered Nanoplates" Mathematics 12, no. 22: 3545. https://doi.org/10.3390/math12223545
APA StyleSadeghian, M., Palevicius, A., Griskevicius, P., & Janusas, G. (2024). Nonlinear Analysis of the Multi-Layered Nanoplates. Mathematics, 12(22), 3545. https://doi.org/10.3390/math12223545