Multiobjective Route Optimization for Multimodal Cold Chain Networks Considering Carbon Emissions and Food Waste
Abstract
:1. Introduction
- The model accounts for the accumulation of total transportation time and temperature variations during transit to highlight the differences between cold chain cargo transportation and traditional cargo transportation. The Weibull function is used to model the changing cargo loss rate due to temperature fluctuations.
- To make the model more realistic, random variables are incorporated to represent transportation time uncertainties, and Monte Carlo simulation is employed for the effective treatment of these uncertainties. Additionally, the shift periods of transportation modes are explicitly modeled.
- A carbon pricing function is introduced to convert carbon emissions into carbon emission costs, thereby integrating environmental impact into the transportation modeling process.
- To solve the high-dimensional, multiobjective optimization problem, we propose the MC-ObOEA algorithm. The algorithm evaluates and selects individuals based on convergence and distribution metrics, ensuring that the Pareto front solution set with superior performance is obtained.
2. A Multiobjective Multimodal Cold Chain Transport Route Optimization Model
2.1. Problem Description
- 1.
- Transported cargoes are indivisible and must remain intact during delivery.
- 2.
- The time and cost of transitioning between different transport modes are known.
- 3.
- The arrival time of the cargoes at the nodes marks the beginning of loading, unloading, and trans-shipment.
- 4.
- After loading, unloading, and trans-shipment, the subsequent transport leg begins according to the nearest available schedule of the chosen mode.
- 5.
- The transport time distributions for each stage of the journey are known.
- 6.
- Waiting times during transportation are solely due to constraints of the transport mode shift.
- 7.
- The capacities, facilities, equipment, and personnel of the transport nodes meet the requirements for feasible transshipment.
- 8.
- The temperature of the goods remains constant while being transported by a single mode of transport; however, during transit, the temperature may change to some extent.
2.2. Parameter Definition
- Cargo volume.
- Carbon tax coefficient.
- Transportation cost from node i to node j with transport mode a.
- Transportation time from node i to node j with transport mode a.
- Carbon emissions coefficient from node i to node j with transport mode a.
- Average speed from node i to node j by transport mode a.
- Cargo departure time at node i (assuming that the departure time at the origin is given).
- Cargo arrival time at node i.
- Cargo trans-shipment completion time at node i.
- Cost of changing the transport mode from a to b at node i.
- Time to change the transport mode from a to b at node i.
- Carbon emissions coefficient of change in transport mode from a to b at node i.
- Gives the schedule for using the transport mode a from node i to node j, where and denote the departure time of the n-th change.
- Cargo transshipment time at node i.
- The correlation between cargo holding costs and trans-shipment time is expressed as a piecewise function, where the cost varies depending on the duration of the holding period. (For example, the holding cost is set at 0.01 CNY per minute for the first three hours, increasing to 0.02 CNY per minute for three to five hours, with different rates applied beyond this time.) These rates also differ depending on the transport mode used.
2.3. Optimization Model Formulation
3. A High-Dimensional Multiobjective Multimodal Route Optimization Algorithm
3.1. General Algorithm Framework
Algorithm 1 MC-ObOEA framework. |
Input: P (initial population), N (population size)
|
3.2. Convergence and Distribution Metrics
3.2.1. Convergence Metric
3.2.2. Distribution Metric
3.3. Selection Strategy
4. Computational Experiments
4.1. Experimental Design and Parameters
4.2. Impact of Convergence Indicators on the Performance of MC-ObOEA
4.3. Impact of Distribution Indicators on the Performance of MC-ObOEA
4.4. Algorithm Effectiveness Analysis
4.5. Effects of Parameter Variations on Carbon Emissions and Cargo Loss
- Scheme 1: , with a total transportation time of 7126 min, a transportation cost of 5857 CNY, a carbon cost of 490 CNY, and a cargo depletion rate of 0.220.
- Scheme 2: , with a total transportation time of 8720 min, a transportation cost of 6033 CNY, a carbon cost of 375 CNY, and a cargo depletion rate of 0.263.
- Scheme 3: , with a total transportation time of 15,565 min, a transportation cost of 5046 CNY, a carbon cost of 388 CNY, and a cargo depletion rate of 0.426.
- Scheme 4: , with a total transportation time of 13,002 min, a transportation cost of 5484 CNY, a carbon cost of 306 CNY, and a cargo loss rate of 0.368.
5. A Case Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R.; Opara, U.L. Mechanical damage of fresh produce in postharvest transportation: Current status and future prospects. Trends Food Sci. Technol. 2022, 124, 195–207. [Google Scholar] [CrossRef]
- Vilas-Boas, J.L.; Rodrigues, J.J.; Alberti, A.M. Convergence of Distributed Ledger Technologies with Digital Twins, IoT, and AI for fresh food logistics: Challenges and opportunities. J. Ind. Inf. Integr. 2023, 31, 100393. [Google Scholar] [CrossRef]
- Bogataj, D.; Bogataj, M.; Campuzano-Bolarin, F.; Nicolás, J.A.M. Location Advantages of the Container Port for Perishable Goods in the Murcia Region. IFAC-Pap. 2022, 55, 2701–2706. [Google Scholar] [CrossRef]
- Calati, M.; Righetti, G.; Zilio, C.; Hooman, K.; Mancin, S. CFD analyses for the development of an innovative latent thermal energy storage for food transportation. Int. J. Thermofluids 2023, 17, 100301. [Google Scholar] [CrossRef]
- Liang, X.; Wang, N.; Zhang, M.; Jiang, B. Bi-objective multi-period vehicle routing for perishable goods delivery considering customer satisfaction. Expert Syst. Appl. 2023, 220, 119712. [Google Scholar] [CrossRef]
- Li, W.; Bao, L.; Li, Y.; Si, H.; Li, Y. Assessing the transition to low-carbon urban transport: A global comparison. Resour. Conserv. Recycl. 2022, 180, 106179. [Google Scholar] [CrossRef]
- Shashi, S.; Centobelli, P.; Cerchione, R.; Ertz, M. Food cold chain management: What we know and what we deserve. Supply Chain. Manag. Int. J. 2020, 26, 102–135. [Google Scholar] [CrossRef]
- Wu, J.Y.; Hsiao, H.I. Food quality and safety risk diagnosis in the food cold chain through failure mode and effect analysis. Food Control. 2021, 120, 107501. [Google Scholar] [CrossRef]
- Behdani, B.; Fan, Y.; Bloemhof, J.M. Cool chain and temperature-controlled transport: An overview of concepts, challenges, and technologies. In Sustainable Food Supply Chains; Elsevier: Amsterdam, The Netherlands, 2019; pp. 167–183. [Google Scholar] [CrossRef]
- Zhang, X.; Lam, J.S.L.; Iris, c. Cold chain shipping mode choice with environmental and financial perspectives. Transp. Res. Part D Transp. Environ. 2020, 87, 102537. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X. An Optimization Model for the Vehicle Routing Problem in Multi-product Frozen Food Delivery. J. Appl. Res. Technol. 2014, 12, 239–250. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, H.; Wang, C.; Jia, X. An integrated distribution scheduling and route planning of food cold chain with demand surge. Complex Intell. Syst. 2022, 9, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Sun, K.; Gu, Y.; Shen, J.; Du, M. Multimodal Transport Path Selection of Cold Chain Logistics Based on Improved Particle Swarm Optimization Algorithm. J. Adv. Transp. 2022, 2022, 458760. [Google Scholar] [CrossRef]
- Chaofan, W.; Yu, S. An Optimization Model for Vehicle Routing in Urban Cold-Chain Logistics. Int. J. Model. Optim. 2022, 12, 76–81. [Google Scholar] [CrossRef]
- Franceschetti, A.; Demir, E.; Honhon, D.; Van Woensel, T.; Laporte, G.; Stobbe, M. A metaheuristic for the time-dependent pollution-routing problem. Eur. J. Oper. Res. 2017, 259, 972–991. [Google Scholar] [CrossRef]
- Ma, Z.J.; Wu, Y.; Dai, Y. A combined order selection and time-dependent vehicle routing problem with time widows for perishable product delivery. Comput. Ind. Eng. 2017, 114, 101–113. [Google Scholar] [CrossRef]
- Liu, S. Multimodal Transportation Route Optimization of Cold Chain Container in Time-Varying Network Considering Carbon Emissions. Sustainability 2023, 15, 4435. [Google Scholar] [CrossRef]
- Roghanian, E.; Cheraghalipour, A. Addressing a set of meta-heuristics to solve a multi-objective model for closed-loop citrus supply chain considering CO2 emissions. J. Clean. Prod. 2019, 239, 118081. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Goli, A.; Faridnia, A.; Soltani, M.; Weber, G.W. Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. J. Clean. Prod. 2020, 276, 122927. [Google Scholar] [CrossRef]
- Zulvia, F.E.; Kuo, R.; Nugroho, D.Y. A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products. J. Clean. Prod. 2020, 242, 118428. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, Z.; Hu, D.; Fouad Mansour, R. Optimizing Fresh Logistics Distribution Route Based on Improved Ant Colony Algorithm. Comput. Mater. Contin. 2022, 73, 2079–2095. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Hao, Y.; Yuan, X. A low-carbon route optimization method for cold chain logistics considering traffic status in China. Comput. Ind. Eng. 2024, 193, 110304. [Google Scholar] [CrossRef]
- Liao, S.; Li, X.; Niu, Y.; Xu, Z.; Cao, Y. Risk control of epidemic in urban cold-chain transportation. Sustain. Cities Soc. 2024, 107, 105408. [Google Scholar] [CrossRef]
- Giri, B.; Chakrabarty, T.; Chaudhuri, K. A note on a lot sizing heuristic for deteriorating items with time-varying demands and shortages. Comput. Oper. Res. 2000, 27, 495–505. [Google Scholar] [CrossRef]
- Liu, S.; Peng, Y.; Song, Q.; Zhong, Y. The robust shortest path problem for multimodal transportation considering timetable with interval data. Syst. Sci. Control. Eng. 2018, 6, 68–78. [Google Scholar] [CrossRef]
- Peng, Y.; Luo, Y.J.; Jiang, P.; Yong, P.C. The route problem of multimodal transportation with timetable: Stochastic multi-objective optimization model and data-driven simheuristic approach. Eng. Comput. 2021, 39, 587–608. [Google Scholar] [CrossRef]
- Liu, X.; Shangguan, Q.; Zhang, B.; Zhang, T.; Yang, X.; Sun, X. Path optimization of low-carbon multimodal transport models in the transportation industry. Technol. Manag. Res. 2021, 41, 192–200. [Google Scholar]
- Liu, Y.; Gong, D.; Sun, X.; Zhang, Y. Many-objective evolutionary optimization based on reference points. Appl. Soft Comput. 2017, 50, 344–355. [Google Scholar] [CrossRef]
- Peng, Y.; Yong, P.; Luo, Y. The route problem of multimodal transportation with timetable under uncertainty: Multi-objective robust optimization model and heuristic approach. RAIRO Oper. Res. 2021, 55, S3035–S3050. [Google Scholar] [CrossRef]
oA;[25,3]891;[42,4]700;∼; | EF;[47,5]1650;∼;∼; |
oB;[25,3]924;[42,3]700;∼; | EG;[47,5]891;∼;∼; |
oC;[28,5]957;[70,6]372.75;∼; | EH;[31,3]1551;[43,3]980;[102,5]530.25; |
AD;[48,5]1650;∼;∼; | EJ;∼;∼;[95,6]509.25; |
AE;[25,4]924;[42,3]700;∼; | EM;∼;∼;[95,6]1120; |
AI;∼;[38,5]1330;[100,6]556.5; | FI;∼;[38,5]1330;[100,6]551.25; |
BA;[25,3]891;[43,4]700;∼; | FJ;[25,3]891;[43,3]700;∼; |
BC;∼;[30,3]1120;∼; | FL;[25,3]891;[43,4]700;∼; |
BD;[28,5]957;∼;[69,6]372.75; | GI;[25,3]924;[44,3]700;∼; |
BE;[30,3]1551;[43,3]1015;[103,5]530.25; | GJ;∼;[30,3]1120;∼; |
BF;[25,3]924;[42,4]700;∼; | GL;[24,3]924;[42,4]700;∼; |
BG;[25,3]891;[42,4]700;∼; | HI;[31,3]1518;[43,3]1015;[102,5]530.25; |
BH;[31,3]1551;[43,3]980;[103,5]540.75; | HJ;[28,5]957;∼;[70,6]372.75; |
CD;[25,3]924;[43,4]700;∼; | HL;[24,3]924;[42,4]700;∼; |
CE;[25,3]891;[43,4]700;∼; | IK;[25,4]891;[42,4]700;∼; |
CJ;∼;[37,5]1295;[100,6]556.5; | IL;[30,3]1551;[43,3]101;[102,5]530.25; |
DF;[25,3]924;[42,4]700;∼; | IM;∼;[37,4]1330;[101,5]551.25; |
DG;[25,3]924;[43,3]700;∼; | JK;[25,3]11,891;[42,4]700;∼; |
DH;[25,3]891;[42,4]700;∼; | JL;[30,4]1518;[43,3]1015;[103,4]530.25; |
DI;∼;∼;[95,6]504; | JM;[47,4]1650;∼;∼; |
DK;[25,3]891;[42,4]700;∼; | Kd;[30,4]1518;[43,3]1015;[102,5]535.5; |
ML;[26,3]924;[43,4]700;∼; | LK;[47,4]1650;∼;∼; |
Md;∼;[37,5]1295;[100,6]551.25; | Ld;[38,5]1330;[100,6]551.25;∼; |
Transport Mode | Carbon Emissions (kgCO2/t km) | Average Speed (km/h) | Transport Mode |
---|---|---|---|
highway | 0.044 | 80 | highway |
railway | 0.0091 | 40 | railway |
waterway | 0.0127 | 25 | waterway |
Transport Mode | Highway Transition Time (h) | Railroad Transition Time (h) | Waterway Transition Time (h) |
---|---|---|---|
highway | 1 | 1.5 | 2 |
railway | 1.5 | 2 | 4 |
waterway | 2 | 4 | 3 |
Transport Mode | Highway Transition Cost (CNY) | Railroad Transition Cost (CNY) | Waterway Transition Cost (CNY) |
---|---|---|---|
highway | 30 | 30 | 40 |
railway | 30 | 40 | 50 |
waterway | 40 | 50 | 50 |
Transport Mode | Highway Transition Coefficient kgCO2/t | Railroad Transition Coefficient kgCO2/t | Waterway Transition Coefficient kgCO2/t |
---|---|---|---|
highway | 0.125 | 0.128 | 0.117 |
railway | 0.128 | 0.115 | 0.113 |
waterway | 0.117 | 0.113 | 0.12 |
Parameter Definition | Initial Value | Parameter Definition | Initial Value |
---|---|---|---|
Network node size | 15 | Carbon tax coefficient p | 30 |
Number of individuals in population | 80 | Temperature during transportation (°C) | 5 °C |
Number of iterations | 100 | Variation in transit temperature range (°C) | 1 °C |
Crossover probability | 0.8 | Cargo activation energy | 34 KJ/mol |
Mutation probability | 0.2 | Cargo weight q | 25 t |
Simulation runs | 500 | Maximum reaction rate | 5 × 1014 |
1 | Gas constant R | 8.314 | |
Correlation coefficients between cargo storage costs and detention times | 1 |
Optimization Problem | ||||||
---|---|---|---|---|---|---|
15-2 | 0.0125 | 0.1250 | 0.1429 | 0.1250 | 0.1429 | 0.1250 |
15-3 | 0.3333 | 0.0345 | 0.0345 | 0.3333 | 0.0345 | 0.0345 |
15-4 | 0.0345 | 0.0345 | 0.0333 | 0.0345 | 0.0333 | 0.0345 |
30-2 | 0.0769 | 0.0769 | 0.0769 | 0.0769 | 0.0769 | 0.0769 |
30-3 | 0.0417 | 0.0345 | 0.0345 | 0.0417 | 0.0345 | 0.0345 |
30-4 | 0.0345 | 0.0385 | 0.0385 | 0.0345 | 0.0385 | 0.0385 |
50-2 | 0.2000 | 0.2000 | 0.1111 | 0.2000 | 0.1111 | 0.2000 |
50-3 | 0.3230 | 0.0400 | 0.0370 | 0.0323 | 0.0370 | 0.0400 |
50-4 | 0.0417 | 0.0278 | 0.0000 | 0.0417 | 0.0000 | 0.0278 |
Optimization Problem | ||||||
---|---|---|---|---|---|---|
15-2 | 1272.79 | 1305.11 | 1266.09 | 1346.38 | 0.1670 | 0.1250 |
15-3 | 397.49 | 413.82 | 362.42 | 381.76 | 0.0340 | 0.0330 |
15-4 | 394.80 | 461.91 | 401.38 | 423.56 | 0.0303 | 0.0345 |
30-2 | 822.69 | 941.07 | 809.31 | 935.13 | 0.0769 | 0.0769 |
30-3 | 346.42 | 698.58 | 282.68 | 624.86 | 0.0476 | 0.0417 |
30-4 | 429.68 | 668.30 | 379.47 | 637.12 | 0.0333 | 0.0345 |
50-2 | 760.31 | 793.15 | 661.75 | 681.66 | 0.1250 | 0.2000 |
50-3 | 554.10 | 819.72 | 489.89 | 718.31 | 0.0476 | 0.0323 |
50-4 | 364.63 | 649.91 | 298.34 | 508.81 | 0.0556 | 0.0417 |
Network Scale | Stats | Obj.1 | Obj.2 | Obj.3 | Obj.4 |
---|---|---|---|---|---|
15-node | Min | 6721.7 | 5184.4 | 301.5 | 0.21 |
Mean | 9637.52 | 5724.16 | 397.53 | 0.28 | |
Std | 246.49 | 72.13 | 2.21 | 0.0072 | |
30-node | Min | 9633.35 | 7158.5 | 413.6 | 0.28 |
Mean | 14,483.72 | 7835.96 | 615.73 | 0.38 | |
Std | 98.05 | 60.21 | 2.01 | 0.0024 | |
50-node | Min | 13,336 | 9694.5 | 609.5 | 0.29 |
Mean | 18,497.79 | 10,359.2 | 770.52 | 0.39 | |
Std | 556.16 | 150.37 | 23.62 | 0.0068 |
Evaluation Indicators | |||||||||
---|---|---|---|---|---|---|---|---|---|
Optimization Problem | MC-ObOEA | RPEA | NSGA-II | MC-ObOEA | RPEA | NSGA-II | MC-ObOEA | RPEA | NSGA-II |
15-2 | 6.3 | 7.6 | 6.4 | 1272.79 | 1072.72 | 1254.86 | 1266.09 | 1006.77 | 1250.99 |
15-3 | 7.6 | 11.3 | 14.25 | 397.49 | 418.41 | 473.14 | 362.42 | 398.51 | 438.57 |
15-4 | 9.3 | 14.4 | 17.8 | 393.8 | 428.69 | 455.13 | 405.38 | 393.26 | 419.62 |
30-2 | 8.1 | 8.5 | 9.15 | 826.69 | 638.64 | 815.04 | 809.31 | 565.41 | 788.012 |
30-3 | 11.6 | 14.3 | 16.55 | 346.42 | 476.95 | 603.94 | 282.68 | 419.25 | 567.8 |
30-4 | 12.9 | 15.5 | 19 | 427.68 | 540.92 | 566.52 | 379.47 | 382.17 | 526.98 |
50-2 | 8.7 | 9 | 10.5 | 754.3 | 722.86 | 742.28 | 661.74 | 693.01 | 699.97 |
50-3 | 11.6 | 14.5 | 19.7 | 554.1 | 534.46 | 524.25 | 489.89 | 496.1 | 490.45 |
50-4 | 13.4 | 16.3 | 23.4 | 364.63 | 410.13 | 493.6 | 298.34 | 433.19 | 415.18 |
Evaluation Indicator | Algorithm | t-Value | p-Value | = 0.05 |
---|---|---|---|---|
MC-ObOEA-PREA | 4.710 | 0.002 | yes | |
MC-ObOEA-NSGA-II | 4.453 | 0.002 | yes | |
RPEA-NSGA-II | 3.459 | 0.009 | yes | |
MC-ObOEA-PREA | 0.268 | 0.795 | no | |
MC-ObOEA-NSGA-II | 2.042 | 0.075 | no | |
RPEA-NSGA-II | 3.226 | 0.012 | yes | |
MC-ObOEA-PREA | 0.392 | 0.706 | no | |
MC-ObOEA-NSGA-II | 2.154 | 0.063 | no | |
RPEA-NSGA-II | 2.666 | 0.029 | yes |
Optimization Problem | MC-ObOEA | RPEA | MC-ObOEA | NSGA-II | RPEA | NSGA-II |
---|---|---|---|---|---|---|
15-2 | 0.1429 | 0.1111 | 0.1250 | 0.1111 | 0.1670 | 0.1000 |
15-3 | 0.0357 | 0.0357 | 0.0313 | 0.0357 | 0.0370 | 0.0300 |
15-4 | 0.0357 | 0.0294 | 0.0323 | 0.0000 | 0.0370 | 0.0290 |
30-2 | 0.0769 | 0.0625 | 0.0769 | 0.0667 | 0.1000 | 0.0380 |
30-3 | 0.0400 | 0.0385 | 0.0500 | 0.0385 | 0.0500 | 0.0300 |
30-4 | 0.0345 | 0.0370 | 0.0345 | 0.0333 | 0.0430 | 0.0320 |
50-2 | 0.0270 | 0.0286 | 0.1667 | 0.1250 | 0.1670 | 0.1100 |
50-3 | 0.0345 | 0.0370 | 0.0345 | 0.0333 | 0.0450 | 0.0260 |
50-4 | 0.0323 | 0.0000 | 0.0417 | 0.0333 | 0.0360 | 0.0230 |
Routes and Modes | Carbon Tax Rate (CNY/t) | Carbon Emissions Cost (CNY) | Rate of Change | Routes and Modes | Carbon Tax Rate (CNY/t) | Carbon Emissions Cost (CNY) | Rate of Change |
---|---|---|---|---|---|---|---|
Scheme 1: o(H)C(H) D(H)K(H)d | 10 | 375 | / | Scheme 2: o(W)C(R) D(R)K(R)d | 10 | 274 | / |
25 | 520 | 0.37 | 25 | 300 | 0.095 | ||
40 | 660 | 0.27 | 40 | 326 | 0.087 | ||
60 | 850 | 0.29 | 60 | 360 | 0.104 | ||
Scheme 3: o(H)A(H) E(R)M(R)d | 10 | 326 | / | Scheme 4: o(H)A(R) E(R)M(R)d | 10 | 300 | / |
25 | 401 | 0.23 | 25 | 357 | 0.19 | ||
40 | 476 | 0.19 | 40 | 405 | 0.13 | ||
60 | 578 | 0.21 | 60 | 469 | 0.16 | ||
Scheme 5: o(R)B(H) D(H)K(R)d | 10 | 340 | / | Scheme 6: o(R)B(W) D(R)K(R)d | 10 | 272 | / |
25 | 422 | 0.24 | 25 | 298 | 0.095 | ||
40 | 504 | 0.19 | 40 | 323 | 0.084 | ||
60 | 611 | 0.21 | 60 | 357 | 0.11 | ||
Scheme 7: o(H)B(H) G(H)L(R)d | 10 | 352 | / | Scheme 8: o(R)B(R) G(H)L(R)d | 10 | 310 | / |
25 | 455 | 0.29 | 25 | 358 | 0.15 | ||
40 | 558 | 0.23 | 40 | 407 | 0.14 | ||
60 | 695 | 0.25 | 60 | 472 | 0.16 |
Product | Activation Energy (kJ/mol) | Product | Activation Energy (kJ/mol) | Product | Activation Energy (kJ/mol) |
---|---|---|---|---|---|
Apricot | 30.62 | Date | 54.51 | Tomato | 32.94 |
Sliced potato | 39.49 | Bean | 27.71 | Purple grape | 67.29 |
Sliced pumpkin | 78.93 | Garlic | 23.48 | Sliced carrot | 25.93 |
30 kJ/mol | 33 kJ/mol | 36 kJ/mol | 39 kJ/mol | 42 kJ/mol | 45 kJ/mol | 48 kJ/mol | ||
---|---|---|---|---|---|---|---|---|
ΔF (°C) | ||||||||
0.2 | 0.72071 | 0.31413 | 0.08855 | 0.02513 | 0.00779 | 0.00212 | 0.00058 | |
0.4 | 0.72522 | 0.31459 | 0.08917 | 0.02602 | 0.00775 | 0.00777 | 0.00058 | |
0.6 | 0.73096 | 0.31562 | 0.09312 | 0.02624 | 0.00779 | 0.00776 | 0.00058 | |
0.8 | 0.7355 | 0.31685 | 0.09641 | 0.02709 | 0.00779 | 0.00781 | 0.00058 | |
1 | 0.7409 | 0.31727 | 0.09716 | 0.02816 | 0.00782 | 0.00777 | 0.00059 | |
1.2 | 0.74419 | 0.31738 | 0.09942 | 0.02874 | 0.00781 | 0.00782 | 0.00059 | |
1.4 | 0.75269 | 0.31828 | 0.09978 | 0.02884 | 0.00782 | 0.0078 | 0.00058 | |
1.6 | 0.75361 | 0.31682 | 0.09925 | 0.02895 | 0.0078 | 0.0078 | 0.00059 | |
1.8 | 0.75399 | 0.31752 | 0.09941 | 0.02899 | 0.00782 | 0.00787 | 0.00058 | |
2 | 0.75436 | 0.31855 | 0.10007 | 0.029 | 0.00785 | 0.00777 | 0.00058 |
1–2;∼;[67,8]11,055;∼; | 9–18;∼;∼;[342,32]14,179; |
1–3;[96,5]8678;∼;[240,24]2972; | 10–9;∼;∼;[28,8]628; |
1–4;[80,5]6720;[62,6]4520;∼ | 10–16;∼;∼;[97,8]4097; |
1–5;[89,7]8640;[60,7]5940;∼; | 10–17;∼;∼;[76,8]3013; |
1–6;∼;[14,3]4150;∼; | 10–18;∼;∼;[196,18]9606; |
2–12;∼;[82,5]10,276;∼; | 11–9;∼;∼;[146,12]2246; |
3–7;∼;∼;[84,24]3894; | 11–10;∼;∼;[185,17]2585; |
3–8;∼;∼;[106,8]2880; | 12–13;∼;[68,4]2680;∼; |
3–9;∼;∼;[192,24]5723; | 12–14;∼;[32,2]2981;∼; |
4–7;∼;∼;[37,8]1550; | 13–15;∼;[32,2]2369;∼; |
4–9;∼;∼;[127,21]4050; | 14–20;∼;[12,4]3390;∼; |
5–7;∼;∼;[96,8]2149; | 15–18;∼;∼;[12,4]3689; |
5–9;∼;∼;[125,14]5800; | 16–18;∼;∼;[156,21]5568; |
6–7;∼;∼;[26,8]3030; | 17–18;∼;∼;[196,18]6196; |
6–9;∼;∼;[126,18]6260; | 18–19;∼;∼;[96,8]3109; |
6–11;∼;∼;[196,22]6800; | 19–22;∼;∼;[146,19]4146; |
7–9;∼;∼;[129,8]3889; | 19–23;∼;∼;[96,8]3533; |
8–9;∼;∼;[97,18]3534; | 20–21;∼;[12,2]1600;∼; |
8–10;∼;∼;[123,26]3567; | 21–24;∼;[42,6]6342;∼; |
9–16;∼;∼;[172,12]4572; | 22–24;[26,6]3916;[32,3]2890;[52,7]1820; |
9–17;∼;∼;[136,16]3581; | 23–24;[21,5]4211;[35,3]3501;[64,17]2671; |
Scheme No. | Route and Mode | Obj.1 | Obj.2 | Obj.3 | Obj.4 |
---|---|---|---|---|---|
1 | 1(R)2(R)12(R)14(R)20(R)21(R)24 | 16,345 | 39,560 | 498 | 0.215 |
2 | 1(R)6(W)9(W)16(W)18(W)19(W)23(R)24 | 45,277 | 37,344 | 697 | 0.496 |
3 | 1(H)4(W)9(W)16(W)18(W)19(W)23(H)24 | 48,270 | 38,594 | 957 | 0.519 |
4 | 1(R)6(W)9(W)16(W)18(W)19(W)23(W)24 | 49,315 | 36,525 | 716 | 0.526 |
5 | 1(R)4(W)9(W)17(W)18(W)19(W)23(W)24 | 52,634 | 34,504 | 730 | 0.549 |
6 | 1(W)3(W)9(W)18(W)19(W)23(R)24 | 63,297 | 38,813 | 585 | 0.612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhang, Y.; Yu, D.Z.; Luo, Y. Multiobjective Route Optimization for Multimodal Cold Chain Networks Considering Carbon Emissions and Food Waste. Mathematics 2024, 12, 3559. https://doi.org/10.3390/math12223559
Peng Y, Zhang Y, Yu DZ, Luo Y. Multiobjective Route Optimization for Multimodal Cold Chain Networks Considering Carbon Emissions and Food Waste. Mathematics. 2024; 12(22):3559. https://doi.org/10.3390/math12223559
Chicago/Turabian StylePeng, Yong, Yali Zhang, Dennis Z. Yu, and Yijuan Luo. 2024. "Multiobjective Route Optimization for Multimodal Cold Chain Networks Considering Carbon Emissions and Food Waste" Mathematics 12, no. 22: 3559. https://doi.org/10.3390/math12223559
APA StylePeng, Y., Zhang, Y., Yu, D. Z., & Luo, Y. (2024). Multiobjective Route Optimization for Multimodal Cold Chain Networks Considering Carbon Emissions and Food Waste. Mathematics, 12(22), 3559. https://doi.org/10.3390/math12223559