The Minimal Molecular Tree for the Exponential Randić Index
Abstract
:1. Introduction
2. Main Result
- Case 1. .
- Case 3. .
- Case 2. . The tree is illustrated as in Figure 9, where and . As , . Thus, for at least one . Without loss of generality, we can assume that . Now the following three subcases may arise.
- (i)
- When , the minimum value is achieved in with the value:
- (ii)
- When , the minimum value is achieved in with the value:
- (iii)
- When , the minimum value is achieved in with the value:
- Case 1. . Since , in this case for some positive integer . From (16), we obtain , that is, . Combining this result with Lemmas 6–8, we must have and for . Using these results with (10) and (18), we obtain , , and hence, . From (16), we have , and then from (10), . Using (17)–(20), we obtain and that is, Thus, we obtain:
- Case 3. . In this case for some positive integer . By (16), we obtain . Applying Lemmas 6–8, it follows that , that is, . Hence . Similar to Case 1, we obtain , , and . Thus, we obtain:
3. Chemical Relevance
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Bollobás, B.; Erdos, P. Graphs of extremal weights. Ars Combin. 1998, 50, 225–233. [Google Scholar] [CrossRef]
- Caporossi, G.; Gutman, I.; Hansen, P.; Pavlović, L. Graphs with maximum connectivity index. Comput. Biol. Chem. 2003, 27, 85–90. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Yuan, Y. Trees with minimum general Randić index. MATCH Commun. Math. Comput. Chem. 2004, 52, 119–128. [Google Scholar]
- Hu, Y.; Li, X.; Yuan, Y. Trees with maximum general Randić index. MATCH Commun. Math. Comput. Chem. 2004, 52, 129–146. [Google Scholar]
- Altassan, A.; Imran, M. Generalized quasi trees with respect to degree-based topological indices and their applications to COVID-19 drugs. Mathematics 2023, 11, 647. [Google Scholar] [CrossRef]
- Altassan, A.; Imran, M. General Randić index of unicyclic graphs and its applications to drugs. Symmetry 2024, 16, 113. [Google Scholar] [CrossRef]
- Aouchiche, M.; Hansen, P. On a conjecture about Randić index. Discrete Math. 2007, 307, 262–265. [Google Scholar] [CrossRef]
- Delorme, C.; Favaron, O.; Rautenbach, D. On the Randić index. Discrete Math. 2002, 257, 29–38. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, B. On Randić indices of trees, unicyclic graphs, and bicyclic graphs. Int. J. Quantum Chem. 2011, 111, 2760–2770. [Google Scholar] [CrossRef]
- Ismailescu, D.; Stefanica, D. Minimizer graphs for a class of extremal problems. J. Graph Theory 2002, 39, 230–240. [Google Scholar] [CrossRef]
- Jamil, M.K.; Tomescu, I.; Imran, M.; Javed, A. Some bounds on zeroth-order general Randić index. Mathematics 2020, 8, 98. [Google Scholar] [CrossRef]
- Jamri, A.A.S.A.; Movahedi, F.; Hasni, R.; Gobithaasan, R.U.; Akhbari, M.H. Minimum Randić Index of Trees with Fixed Total Domination Number. Mathematics 2022, 10, 3729. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y. A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156. [Google Scholar]
- Li, X.; Shi, Y.; Xu, T. Unicyclic graphs with maximum general Randić index for α>0. MATCH Commun. Math. Comput. Chem. 2006, 56, 557–570. [Google Scholar]
- Li, X.; Wang, L.; Zhang, Y. Complete solution for unicyclic graphs with minimum general Randić index. MATCH Commun. Math. Comput. Chem. 2006, 55, 391–408. [Google Scholar]
- Li, X.; Yuan, Y. Sharp bounds for the general Randić index. MATCH Commun. Math. Comput. Chem. 2004, 51, 155–166. [Google Scholar]
- Liu, H.; Lu, M.; Tian, F. Trees of extremal connectivity index. Discrete Appl. Math. 2005, 151, 106–119. [Google Scholar] [CrossRef]
- Swartz, E.; Vetrík, T. Survey on the general Randić index: Extremal results and bounds. Rocky Mt. J. Math. 2022, 52, 1177–1203. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, B. Randić index of a line graph. Axioms 2022, 11, 210. [Google Scholar] [CrossRef]
- Rada, J. Exponential vertex-degree-based topological indices and discrimination. MATCH Commun. Math. Comput. Chem. 2019, 82, 29–41. [Google Scholar]
- Cruz, R.; Monsalve, J.; Rada, J. The balanced double star has maximum exponential second Zagreb index. J. Combin. Optim. 2021, 41, 544–552. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J. The path and the star as extremal values of vertex-degree-based topological indices among trees. MATCH Commun. Math. Comput. Chem. 2019, 82, 715–732. [Google Scholar]
- Das, K.C.; Elumalai, S.; Balachandran, S. Open problems on the exponential vertex-degree-based topological indices of graphs. Discrete Appl. Math. 2021, 293, 38–49. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S. On exponential geometric-arithmetic index of graphs. J. Math. Chem. 2024, 62, 2740–2760. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S. On EAZ index of unicyclic and bicyclic graphs, general graphs in terms of the number of cut edges. J. Appl. Math. Comput. 2024, 70, 2995–3010. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S.; Huh, D. On the exponential augmented Zagreb index of graphs. J. Appl. Math. Comput. 2024, 70, 839–865. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S.; Huh, D. Open problem on the maximum exponential augmented Zagreb index of unicyclic graphs. Comput. Appl. Math. 2024, 43, 317. [Google Scholar] [CrossRef]
- Jahanbani, A.; Cancan, M.; Motamedi, R. Extremal trees for the exponential of forgotten topological index. J. Math. 2022, 2022, 7455701. [Google Scholar] [CrossRef]
- Cruz, R.; Monsalve, J.; Rada, J. Trees with maximum exponential Randić index. Discrete Appl. Math. 2020, 283, 634–643. [Google Scholar] [CrossRef]
- Qiu, L.; Ruan, X.J.; Zhu, Y. The maximum and minimum value of exponential Randić indices of Quasi-Tree graph. J. Appl. Math. Phys. 2024, 12, 1804–1818. [Google Scholar] [CrossRef]
- Lin, Q.; Zhu, Y. Unicyclic graphs with extremal exponential Randić index. Math. Model. Control 2021, 1, 164–171. [Google Scholar] [CrossRef]
- Zhong, L. Molecular trees with extremal harmonic indices. Optoelectron. Adv.-Mater.-Rapid Commun. 2014, 8, 96–99. [Google Scholar]
- Gutman, I.; Miljković, O.; Caporossi, G.; Hansen, P. Alkanes with small and large Randić connectivity indices. Chem. Phys. Lett. 1999, 306, 366–372. [Google Scholar] [CrossRef]
- Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem. 2009, 46, 1252–1270. [Google Scholar] [CrossRef]
- Deng, H.Y.; Tang, Z.K.; Wu, R.F. Molecular trees with extremal values of Sombor indices. Int. J. Quantum Chem. 2021, 121, e26622. [Google Scholar] [CrossRef]
- Mondal, S.; Das, K.C. Complete solution to open problems on exponential augmented Zagreb index of chemical trees. Appl. Math. Comput. 2024, 482, 128983. [Google Scholar] [CrossRef]
- Albalahi, A.M.; Ali, A.; Du, Z.; Bhatti, A.A.; Alraqad, T.; Iqbal, N.; Hamza, A.E. On bond incident degree indices of chemical graphs. Mathematics 2023, 11, 27. [Google Scholar] [CrossRef]
- Ali, A.; Noureen, S.; Moeed, A.; Iqbal, N.; Hassan, T.S. Fixed-order chemical trees with given segments and their maximum multiplicative sum Zagreb index. Mathematics 2024, 12, 1259. [Google Scholar] [CrossRef]
- Balachandran, S.; Vetrík, T. Exponential second Zagreb index of chemical trees. Trans. Combin. 2021, 10, 97–106. [Google Scholar]
- Du, Z.; Ali, A.; Rafee, R.; Raza, Z.; Jamil, M.K. On the first two extremum Zagreb indices and coindices of chemical trees. Int. J. Quantum Chem. 2021, 121, e26547. [Google Scholar] [CrossRef]
- Mondal, S.; Das, K.C.; Huh, D. The minimal chemical tree for the difference between geometric-arithmetic and Randić indices. Int. J. Quantum Chem. 2024, 124, e27336. [Google Scholar] [CrossRef]
- Shiu, W.C.; Zhang, L.Z. The maximum Randić index of chemical trees with k pendants. Discrete Math. 2009, 309, 4409–4416. [Google Scholar] [CrossRef]
- Wang, F.; Wu, B. The reduced Sombor index and the exponential reduced Sombor index of a molecular tree. J. Math. Anal. Appl. 2022, 515, 126442. [Google Scholar] [CrossRef]
- Stein, W.A. Sage Mathematics Software, Version 6.8; The Sage Development Team. 2015. Available online: http://www.sagemath.org (accessed on 17 October 2024).
- Randić, M.; Trinajstić, N. In search for graph invariants of chemical interes. J. Mol. Struc. 1993, 300, 551–571. [Google Scholar] [CrossRef]
1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | |
1 | 2 | 3 | 4 | 2 | 3 | 4 | 3 | 4 | 4 | |
0.361 | 0.2587 | 0.2228 | 0.2036 | 0.1564 | 0.1205 | 0.1013 | 0.0846 | 0.0654 | 0.0462 |
1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | |
1 | 2 | 3 | 4 | 2 | 3 | 4 | 3 | 4 | 4 | |
() | 0.5001 | 0.4476 | 0.4284 | 0.4182 | 0.3951 | 0.3759 | 0.3657 | 0.3567 | 0.3465 | 0.3363 |
() | 0.2902 | 0.2377 | 0.2185 | 0.2083 | 0.1852 | 0.166 | 0.1558 | 0.1468 | 0.1366 | 0.1264 |
() | 0.2608 | 0.2083 | 0.1891 | 0.1789 | 0.1558 | 0.1366 | 0.1264 | 0.1174 | 0.1072 | 0.097 |
1 | 3 | 4 | 3 | 4 | 4 | |
1 | 1 | 1 | 3 | 3 | 4 | |
) () | 0.1225 | 0.0508 | 0.0406 | - | - | - |
) () | 0.2607 | 0.189 | 0.1788 | 0.1173 | 0.1071 | 0.0969 |
) () | 0.2799 | 0.2082 | 0.198 | 0.1365 | 0.1263 | 0.1161 |
) () | 0.189 | 0.1173 | 0.1071 | 0.0456 | 0.0354 | 0.0252 |
) () | 0.2082 | 0.1365 | 0.1263 | 0.0648 | 0.0546 | 0.0444 |
) () | 0.198 | 0.1263 | 0.1161 | 0.0546 | 0.0444 | 0.0342 |
1 | 3 | 4 | 3 | 4 | 4 | |
1 | 1 | 1 | 3 | 3 | 4 | |
) () | 0.0914 | 0.2296 | 0.2488 | 0.1579 | 0.1771 | 0.1669 |
) () | 0.2296 | 0.3678 | 0.387 | 0.2961 | 0.3153 | 0.3051 |
) () | 0.2488 | 0.387 | 0.4062 | 0.3153 | 0.3345 | 0.3243 |
) () | 0.1771 | 0.3153 | 0.3345 | 0.2436 | 0.2628 | 0.2526 |
) () | 0.1579 | 0.2961 | 0.3153 | 0.2244 | 0.2436 | 0.2334 |
) () | 0.1669 | 0.3051 | 0.3243 | 0.2334 | 0.2526 | 0.2424 |
1 | 3 | 4 | 3 | 4 | 4 | |
1 | 1 | 1 | 3 | 3 | 4 | |
0.1033 | 0.2415 | 0.2607 | 0.1698 | 0.189 | 0.1788 |
1 | 2 | 3 | 4 | |
−0.0413 | 0.1135 | 0.1686 | 0.198 |
2 | 3 | 4 | |
0.0525 | 0.0717 | 0.0819 |
2 | 3 | 4 | |
0.1548 | 0.2099 | 0.2393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bera, J.; Das, K.C. The Minimal Molecular Tree for the Exponential Randić Index. Mathematics 2024, 12, 3601. https://doi.org/10.3390/math12223601
Bera J, Das KC. The Minimal Molecular Tree for the Exponential Randić Index. Mathematics. 2024; 12(22):3601. https://doi.org/10.3390/math12223601
Chicago/Turabian StyleBera, Jayanta, and Kinkar Chandra Das. 2024. "The Minimal Molecular Tree for the Exponential Randić Index" Mathematics 12, no. 22: 3601. https://doi.org/10.3390/math12223601
APA StyleBera, J., & Das, K. C. (2024). The Minimal Molecular Tree for the Exponential Randić Index. Mathematics, 12(22), 3601. https://doi.org/10.3390/math12223601