Drone-Captured Wildlife Data Encryption: A Hybrid 1D–2D Memory Cellular Automata Scheme with Chaotic Mapping and SHA-256
Abstract
:1. Introduction
2. Related Works
3. Preliminaries
3.1. Cellular Automata
- A grid of identical entities called cells, arranged in a circular register. Each cell can occupy one of a finite number of possible states.
- The specific states that the cells can assume.
- The neighborhood of a cell, which includes adjacent cells that influence its state.
- Transition rules that dictate how the state of a cell evolves over time based on the states of its neighbors.
- Class 1: The system evolves towards a simple, homogeneous final state, regardless of the initial configuration.
- Class 2: The system may reach different final states, but the resulting pattern consists of stable or periodically repeating structures.
- Class 3: The system exhibits random behavior, with unpredictable structures appearing throughout the pattern.
- Class 4: The system displays a mix of order and randomness, producing complex behavior.
3.1.1. Elementary CA
3.1.2. Memory Cellular Automata
3.1.3. 2D Memory Cellular Automata
3.2. The Sine-Exponential Map
4. Protecting Wildlife Data: The Necessity of Encryption for Drone-Captured Images
5. Proposed Image Encryption Algorithm
5.1. Key Generation
- Map to the interval using (13), resulting in the sequence .
- Partition into three sub-sequences, each comprising bits, to form the sub-key set .
5.2. Encryption Process
5.2.1. Fourth-Order 2D-MCA
5.2.2. Bitwise Chaotic Diffusion
- Iterate (8) times with the control parameter and seed . By discarding the first 500 values and rearranging the remainder, a chaotic matrix is obtained.
- Map from the interval to the range as follows:
- Perform a bitwise XOR operation between and , as given by
5.2.3. Fourth-Order 1D-MCA
5.3. Decryption Process
6. Performance and Security Analysis
6.1. Implementation and Technical Requirements
6.2. Keyspace Analysis
- The seeds and the control parameters (cf. Equation (8)).
- The seed of the PRNG.
- A 256-bit long hash value.
6.3. Statistical Analysis
6.3.1. Uniformity of the Bit Distribution Within Each Bit-Plane
6.3.2. Correlation of Adjacent Pixels
6.3.3. Histogram and Chi-Square Test
6.3.4. Global Entropy
6.3.5. Local Entropy
- k is the number of non-overlapping image blocks.
- is the number of pixels within each image block.
- is the Shannon entropy of the image block .
6.3.6. Randomness of Cipher-Images
6.4. Sensitivity Analysis
6.4.1. Key Sensitivity
6.4.2. Plaintext Sensitivity
6.4.3. UACI and NPCR
6.5. Known Plaintext and Chosen Plaintext Attacks
6.6. Time Complexity Analysis
7. Security and Performance Validation
- Keyspace analysis: The combination of 1D and 2D MCA significantly expands the keyspace by incorporating diverse spatial and sequential transformations. The multi-dimensional approach prevents brute-force attacks, as the increased complexity requires a much larger keyspace to cover all possible configurations.
- Statistical evaluation: The use of 2D MCA with varying neighbor configurations minimizes statistical biases by distributing pixel values across multiple configurations. This results in a more uniform pixel distribution, as confirmed through tests like histogram analysis and correlation coefficients. The 1D MCA further complicates patterns, ensuring statistical characteristics that make plaintext-image patterns indistinguishable.
- Sensitivity assessment: The layered encryption approach enhances sensitivity, meaning that minor changes to the plaintext or key produce substantial variations in the encrypted image. This was demonstrated through tests such as NPCR and UACI, which confirmed the system’s strong sensitivity to both key and plaintext variations. The combination of 1D and 2D MCA ensures that any change cascades through both spatial and sequential elements, maximizing sensitivity.
- Robustness testing: The structure provided via the 2D MCA adds resilience to attacks by spreading pixel changes widely, making the system more robust against attacks that try to analyze or disrupt pixel structures. The 1D MCA’s sequential, non-linear transformations make it resilient to differential attacks, where attackers attempt to predict output patterns based on small input variations.
- Complexity analysis: Despite the robust security features, the combination of 1D and 2D MCA maintains low computational complexity. Both components are inherently low-cost in terms of processing, and their integration does not introduce significant overhead. The algorithm was tested for efficiency, confirming its suitability for real-time applications and systems with limited computational resources, such as drones.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. An In-Depth Analysis of Time Complexity for the Proposed Image Encryption Algorithm
Addition | |
Multiplication | |
Exponentiation | |
Sinus function | |
Mod | |
XOR | |
SHA-256 operations |
References
- Koh, L.P.; Wich, S.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 2012, 5, 121–132. [Google Scholar] [CrossRef]
- Gonzalez, L.F.; Montes, G.A.; Puig, E.; Johnson, S.; Mengersen, K.; Gaston, K.J. Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 2016, 16, 97. [Google Scholar] [CrossRef] [PubMed]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Pimm, S.L.; Alibhai, S.; Bergl, R.; Dehgan, A.; Giri, C.; Jewell, Z.; Joppa, L.; Kays, R.; Loarie, S. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 2015, 30, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Rees, A.F.; Avens, L.; Ballorain, K.; Bevan, E.; Broderick, A.C.; Carthy, R.R.; Christianen, M.J.; Duclos, G.; Heithaus, M.R.; Johnston, D.W.; et al. The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions. Endanger. Species Res. 2018, 35, 81–100. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef]
- Wich, S.A.; Koh, L.P. Conservation Drones: Mapping and Monitoring Biodiversity; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Chen, G.; Mao, Y.; Chui, C.K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004, 21, 749–761. [Google Scholar] [CrossRef]
- Kocarev, L.; Jakimoski, G. Logistic map as a block encryption algorithm. Phys. Lett. A 2001, 289, 199–206. [Google Scholar] [CrossRef]
- Bouteghrine, B.; Tanougast, C.; Sadoudi, S. Novel image encryption algorithm based on new 3-d chaos map. Multimed. Tools Appl. 2021, 80, 25583–25605. [Google Scholar] [CrossRef]
- Li, S.; Mou, X.; Cai, Y. Pseudo-random bit generator based on couple chaotic systems and its application in stream-cipher cryptography. In Progress in Cryptology—INDOCRYPT 2001, Proceedings of the Second International Conference on Cryptology in India, Chennai, India, 16–20 December 2001; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2247, pp. 316–329. [Google Scholar] [CrossRef]
- Wolfram, S. Cryptography with cellular automata. In Advances in Cryptology; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1986; Volume 218, pp. 429–432. [Google Scholar] [CrossRef]
- Gutowitz, H.A. Cryptography with dynamical systems. In Cellular Automata and Cooperative Systems; Springer: Dordrecht, The Netherlands, 1995; pp. 237–274. [Google Scholar] [CrossRef]
- Roy, S.; Rawat, U.; Karjee, J. A lightweight cellular automata based encryption technique for IoT applications. IEEE Access 2019, 7, 39782–39793. [Google Scholar] [CrossRef]
- Kheiri, H.; Dehghani, R. A hybrid model of recursive cellular automata, DNA sequences, and chaotic system for image encryption. Multimed. Tools Appl. 2024, 1–27. [Google Scholar] [CrossRef]
- Kumari, E.; Mukherjee, S. A Review on Encryption Techniques based on Cellular Automata. In Artificial Intelligence and Communication Technologies; SCRS: New Delhi, India, 2022; pp. 225–234. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Li, J.; Hua, W. A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 2016, 78, 17–25. [Google Scholar] [CrossRef]
- Kumar, A.; Raghava, N. S An efficient image encryption scheme using elementary cellular automata with novel permutation box. Multimed. Tools Appl. 2021, 80, 21727–21750. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; He, Y.; Li, P.; Wang, X.Y. A new color image encryption scheme based on 2DNLCML system and genetic operations. Opt. Lasers Eng. 2020, 128, 106040. [Google Scholar] [CrossRef]
- Liu, W.; Sun, K.; Zhu, C. A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 2016, 84, 26–36. [Google Scholar] [CrossRef]
- Bhat, I.K.; Qadir, F.; Neshat, M.; Gandomi, A.H. Exploring Cellular Automata Learning: An Innovative Approach for Secure and Imperceptible Digital Image Watermarking. IEEE Access 2024, 12, 159748–159774. [Google Scholar] [CrossRef]
- Zhu, H.; Qi, W.; Ge, J.; Liu, Y. Analyzing Devaney chaos of a sine–cosine compound function system. Int. J. Bifurc. Chaos 2018, 28, 1850176. [Google Scholar] [CrossRef]
- Souyah, A.; Faraoun, K.M. Secure image encryption scheme using cellular automata and chaotic maps. Nonlinear Dyn. 2016, 86, 639–653. [Google Scholar] [CrossRef]
- Jeyaram, B.; Raghavan, R. New cellular automata-based image cryptosystem and a novel non-parametric pixel randomness test. Secur. Commun. Netw. 2016, 9, 3365–3377. [Google Scholar] [CrossRef]
- Roy, S.; Shrivastava, M.; Rawat, U.; Pandey, C.V.; Nayak, S.K. IESCA: An efficient image encryption scheme using 2-D cellular automata. J. Inf. Secur. Appl. 2021, 61, 102919. [Google Scholar] [CrossRef]
- Wang, X.; Luan, D. A novel image encryption algorithm using chaos and reversible cellular automata. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3075–3085. [Google Scholar] [CrossRef]
- Habibipour, M.; Maarefdoust, R.; Yaghobi, M.; Rahati, S. An image encryption system by 2D Memorized Cellular Automata and chaos mapping. In Proceedings of the 6th International Conference on Digital Content, Multimedia Technology and Its Applications, Seoul, Republic of Korea, 16–18 August 2010; pp. 331–336. [Google Scholar]
- Haque, A.; Abdulhussein, T.A.; Ahmad, M.; Falah, M.W.; Abd El-Latif, A.A. A strong hybrid S-box scheme based on chaos, 2D cellular automata and algebraic structure. IEEE Access 2022, 10, 116167–116181. [Google Scholar] [CrossRef]
- Ismail, I.A.; Abdo, A.A.; Amin, M.; Diab, H. Self-Adaptive Image Encryption Based on Memory Cellular Automata. Int. J. Inf. Acquis. 2011, 8, 227–241. [Google Scholar] [CrossRef]
- Pokkuluri, K.S.; Usha, D.N. A secure cellular automata integrated deep learning mechanism for health informatics. Int. Arab J. Inf. Technol. 2021, 18, 782–788. [Google Scholar] [CrossRef]
- Neumann, J.V. Theory of Self-Reproducing Automata; University of Illinois Press: Champaign, IL, USA, 1966. [Google Scholar]
- Clarke, K.C. Cellular Automata and Agent-Based Models. In Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1751–1766. [Google Scholar]
- Wolfram, S. Random sequence generation by cellular automata. Adv. Appl. Math. 1986, 7, 123–169. [Google Scholar] [CrossRef]
- Wolfram, S. A New Kind of Science; Wolfram Media: Champaign, IL, USA, 2002; Volume 5, Chapter 6. [Google Scholar]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 2019, 3, 10. [Google Scholar] [CrossRef]
- Seier, G.; Hödl, C.; Abermann, J.; Schöttl, S.; Maringer, A.; Hofstadler, D.N.; Pröbstl-Haider, U.; Lieb, G.K. Unmanned aircraft systems for protected areas: Gadgetry or necessity? J. Nat. Conserv. 2021, 64, 126078. [Google Scholar] [CrossRef]
- Wich, S.A.; Hudson, M.; Andrianandrasana, H.; Longmore, S.N. Drones for conservation. In Conservation Technology; Oxford University Press: Oxford, UK, 2021; Volume 35. [Google Scholar]
- Vermeulen, C.; Lejeune, P.; Lisein, J.; Sawadogo, P.; Bouche, P. Unmanned aerial survey of elephants. PLoS ONE 2013, 8, e54700. [Google Scholar] [CrossRef]
- Sindiramutty, S.R.; Jhanjhi, N.Z.; Tan, C.E.; Yun, K.J.; Manchuri, A.R.; Ashraf, H.; Murugesan, R.K.; Tee, W.J.; Hussain, M. Data Security and Privacy Concerns in Drone Operations. In Cybersecurity Issues and Challenges in the Drone Industry; IGI Global: Hershey, PA, USA, 2024; pp. 236–290. [Google Scholar] [CrossRef]
- Mou, C.; Liu, T.; Zhu, C.; Cui, X. Waid: A large-scale dataset for wildlife detection with drones. Appl. Sci. 2023, 13, 10397. [Google Scholar] [CrossRef]
- Computer Vision Group-University of Granada (CVG-UGR) Image Database. Available online: http://decsai.ugr.es/cvg/dbimagenes/ (accessed on 16 August 2024).
- Hua, Z.; Xu, B.; Jin, F.; Huang, H. Image encryption using Josephus problem and filtering diffusion. IEEE Access 2019, 7, 8660–8674. [Google Scholar] [CrossRef]
- Hua, Z.; Jin, F.; Xu, B.; Huang, H. 2D Logistic-Sine-coupling map for image encryption. Signal Process. 2018, 149, 148–161. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Belazi, A.; Kharbech, S.; Aslam, M.N.; Talha, M.; Xiang, W.; Iliyasu, A.M.; Abd El-Latif, A.A. Improved Sine-Tangent chaotic map with application in medical images encryption. J. Inf. Secur. Appl. 2022, 66, 103131. [Google Scholar] [CrossRef]
- Abd el Latif, A.A.; Abd-el Atty, B.; Amin, M.; Iliyasu, A.M. Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Sci. Rep. 2020, 10, 1930. [Google Scholar] [CrossRef]
- Nestor, T.; De Dieu, N.J.; Jacques, K.; Yves, E.J.; Iliyasu, A.M.; El-Latif, A.; Ahmed, A. A multidimensional hyperjerk oscillator: Dynamics analysis, analogue and embedded systems implementation, and its application as a cryptosystem. Sensors 2020, 20, 83. [Google Scholar] [CrossRef]
- Tsafack, N.; Kengne, J.; Abd-El-Atty, B.; Iliyasu, A.M.; Hirota, K.; Abd EL-Latif, A.A. Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf. Sci. 2020, 515, 191–217. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, K.W.; Yu, H.; Zhu, Z.L. A symmetric color image encryption algorithm using the intrinsic features of bit distributions. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 584–600. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 2013, 222, 323–342. [Google Scholar] [CrossRef]
- Bassham, L.E., III; Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.B.; Leigh, S.D.; Levenson, M.; Vangel, M.; Banks, D.L.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010. [Google Scholar] [CrossRef]
- Hua, Z.; Li, J.; Li, Y.; Chen, Y. Image Encryption Using Value-Differencing Transformation and Modified ZigZag Transformation. Nonlinear Dyn. 2021, 106, 3583–3599. [Google Scholar] [CrossRef]
- Wang, X.; Teng, L.; Qin, X. A novel colour image encryption algorithm based on chaos. Signal Process. 2012, 92, 1101–1108. [Google Scholar] [CrossRef]
- L’Ecuyer, P. Uniform random number generation. Ann. Oper. Res. 1994, 53, 77–120. [Google Scholar] [CrossRef]
8th Bit | 7th Bit | 6th Bit | 5th Bit | 4th Bit | 3rd Bit | 2nd Bit | 1st Bit | ||
---|---|---|---|---|---|---|---|---|---|
Mean | O | 47.3471 | 52.6529 | 53.6961 | 46.3039 | 50.7238 | 49.2762 | 49.9940 | 50.0060 |
E | 50.0024 | 49.9967 | 49.9832 | 49.9939 | 49.9872 | 50.0024 | 50.0088 | 50.0099 | |
Variance | O | 971.6803 | 971.6803 | 654.6106 | 654.6106 | 311.8808 | 311.8808 | 134.7241 | 134.7241 |
E | 0.0120 | 0.0088 | 0.0133 | 0.0076 | 0.0086 | 0.0095 | 0.0093 | 0.0106 |
Scanning Direction | Original Images | Encrypted Images | |
---|---|---|---|
Mean | Horizontal | 0.9480 | 0.0021 |
Vertical | 0.9513 | 0.0022 | |
Diagonal | 0.9150 | 0.0022 |
Test (p-Value) | |||||
---|---|---|---|---|---|
[44] | [45] | [43] | [46] | Proposed | |
Mean | 0.4887 | 0.5432 | 0.4973 | 0.4544 | 0.5206 |
Variance | 0.0781 | 0.0849 | 0.0720 | 0.0907 | 0.0823 |
Success rate (%) | 95 | 96 | 98 | 95 | 98 |
Global Entropy | |||||
---|---|---|---|---|---|
[44] | [45] | [43] | [46] | Proposed | |
Mean | 7.9993 | 7.9993 | 7.9993 | 7.9908 | 7.9993 |
Variance | 3.7935 | 3.8254 | 3.1727 | 0.0072 | 3.8729 |
Local Entropy | |||||
---|---|---|---|---|---|
[44] | [45] | [43] | [46] | Proposed | |
Mean | 7.9025 | 7.9025 | 7.9024 | 7.8924 | 7.9025 |
Variance | 2.7439 | 3.8913 | 3.5318 | 0.0097 | 4.1654 |
Dataset #1 | Dataset #2 | |||||
---|---|---|---|---|---|---|
Test | p-Value | Success Rate (1) | Decision (2) | p-Value | Success Rate (3) | Decision (2) |
Frequency (Monobit) | 0.1206 | 0.9952 | Success | 0.0324 | 0.9952 | Success |
Block Frequency | 0.7647 | 0.9904 | Success | 0.8210 | 0.9809 | Success |
Cumulative Sums (1) | 0.1996 | 0.9952 | Success | 0.7248 | 1.0000 | Success |
Cumulative Sums (2) | 0.3153 | 0.9856 | Success | 0.4895 | 0.9952 | Success |
Runs | 0.6527 | 1.0000 | Success | 0.1516 | 0.9856 | Success |
Longest Run of Ones in a Block | 0.8869 | 0.9856 | Success | 0.4993 | 0.9856 | Success |
Binary Matrix Rank | 0.9329 | 0.9904 | Success | 0.0224 | 0.9856 | Success |
Discrete Fourier Transform (Spectral) | 0.4235 | 0.9904 | Success | 0.4702 | 0.9809 | Success |
Non-overlapping Template Matching (4) | 0.0479 | 0.9713 | Success | 0.8120 | 0.9569 | Success |
Overlapping Template Matching | 0.0746 | 1.0000 | Success | 0.5904 | 0.9761 | Success |
Maurer’s Universal Statistical Test | 0.1010 | 0.9952 | Success | 0.6319 | 0.9904 | Success |
Approximate Entropy | 0.2656 | 0.9856 | Success | 0.9329 | 0.9856 | Success |
Random Excursions (4) | 0.9915 | 0.9667 | Success | 0.1253 | 0.9764 | Success |
Random Excursions Variant (4) | 0.8486 | 0.9833 | Success | 0.1379 | 0.9764 | Success |
Serial (1) | 0.8120 | 0.9904 | Success | 0.2656 | 0.9856 | Success |
Serial (2) | 0.3385 | 0.9856 | Success | 0.2338 | 0.9904 | Success |
Linear Complexity | 0.7147 | 1.0000 | Success | 0.4702 | 0.9952 | Success |
NPCR | |||||
---|---|---|---|---|---|
[44] | [45] | [43] | [46] | Proposed | |
Mean | 99.6081 | 99.6083 | 99.6072 | 99.6106 | 99.6094 |
Variance | 0.0002 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
UACI | |||||
---|---|---|---|---|---|
[44] | [45] | [43] | [54] | Proposed | |
Mean | 33.4639 | 33.4714 | 33.4597 | 33.4262 | 33.4697 |
Variance | 0.0027 | 0.0025 | 0.0022 | 0.1218 | 0.0020 |
Test of Histogram | Correlation | ||||||
---|---|---|---|---|---|---|---|
Image | Algorithm | p-Value | Horizontal | Vertical | Diagonal | Global Entropy | Local Entropy |
All-white | [44] | 0.1511 | −0.0008 | −0.0004 | 0.0014 | 7.9992 | 7.9026 |
[45] | 0.7908 | −0.0050 | 0.0006 | 0.0016 | 7.9993 | 7.9008 | |
[43] | 0.2275 | 0.0032 | 0.0003 | 0.0029 | 7.9993 | 7.9022 | |
[46] | 0.7645 | −0.0014 | −0.0010 | −0.0018 | 7.9993 | 7.9028 | |
Proposed | 0.7219 | 0.0029 | −0.0026 | −0.0004 | 7.9993 | 7.9019 | |
All-black | [44] | 0 | 0.0055 | 0.0022 | −0.0035 | 1.0000 | 0.9996 |
[45] | 0 | 0.0043 | −0.0036 | −0.0040 | 1.0000 | 0.9996 | |
[43] | 0.7901 | −0.0027 | 0.0026 | −0.0006 | 7.9993 | 7.9026 | |
[46] | 0.5702 | 0.0004 | 0.0006 | −0.0002 | 7.9993 | 7.9023 | |
Proposed | 0.9386 | −0.0038 | −0.0013 | −0.0041 | 7.9994 | 7.9034 |
Image | Algorithm | NPCR (%) | UACI (%) |
---|---|---|---|
All-white | [44] | 99.5758 | 33.5269 |
[45] | 99.6132 | 33.4725 | |
[43] | 99.6082 | 33.4887 | |
[46] | 99.6037 | 33.4982 | |
Proposed | 99.6078 | 33.4594 | |
All-black | [44] | 49.9306 | 0.1958 |
[45] | 49.9172 | 0.1958 | |
[43] | 99.5922 | 33.4019 | |
[46] | 99.6117 | 33.4495 | |
Proposed | 99.6143 | 33.4417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belazi, A.; Migallón, H. Drone-Captured Wildlife Data Encryption: A Hybrid 1D–2D Memory Cellular Automata Scheme with Chaotic Mapping and SHA-256. Mathematics 2024, 12, 3602. https://doi.org/10.3390/math12223602
Belazi A, Migallón H. Drone-Captured Wildlife Data Encryption: A Hybrid 1D–2D Memory Cellular Automata Scheme with Chaotic Mapping and SHA-256. Mathematics. 2024; 12(22):3602. https://doi.org/10.3390/math12223602
Chicago/Turabian StyleBelazi, Akram, and Héctor Migallón. 2024. "Drone-Captured Wildlife Data Encryption: A Hybrid 1D–2D Memory Cellular Automata Scheme with Chaotic Mapping and SHA-256" Mathematics 12, no. 22: 3602. https://doi.org/10.3390/math12223602
APA StyleBelazi, A., & Migallón, H. (2024). Drone-Captured Wildlife Data Encryption: A Hybrid 1D–2D Memory Cellular Automata Scheme with Chaotic Mapping and SHA-256. Mathematics, 12(22), 3602. https://doi.org/10.3390/math12223602