Modeling the Impact of Human Awareness and Insecticide Use on Malaria Control: A Fractional-Order Approach
Abstract
:1. Introduction
2. Model Formulation
Preliminaries on the Caputo Fractional Calculus
3. Basic Properties
Non-Negativity and Boundness of Model Solutions
- Case 1: Let us assume that there exists a such that and for where is sufficiently close to if ; then, we see that. This implies that for all
- Case 2: Let us assume that there exists a such that and for where is sufficiently close to if ; then, we see that. This implies that for allThe above discussion shows that the three hyperplanes bound the orthants, meaning the vector field points to This shows that all the solutions of model system (3) remain positive for all . □
4. Basic Reproduction Number and Existence of Equilibria
4.1. Local Stability of the Disease-Free Equilibrium Point
4.2. Endemic Equilibrium Point
5. Results and Discussion
5.1. Model Parameter Estimations
5.2. Sensitivity Analysis
5.3. Effects of Insecticide Use on the Disease Dynamics
5.4. Effects of Health Education Campaigns on the Disease Dynamics
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; ul Rehman, A. A fractional-order malaria model with temporary immunity. In Mathematical Analysis of Infectious Diseases; Academic Press: Cambridge, MA, USA, 2022; pp. 81–101. [Google Scholar]
- Pawar, D.D.; Patil, W.D.; Raut, D.K. Analysis of malaria dynamics using its fractional order mathematical model. J. Appl. Math. Informatics 2021, 2, 197–214. [Google Scholar]
- Gizaw, A.K.; Deressa, C.T. Analysis of Age-Structured Mathematical Model of Malaria Transmission Dynamics via Classical and ABC Fractional Operators. Math. Probl. Eng. 2024, 2024, 3855146. [Google Scholar] [CrossRef]
- Venkatesan, P. The 2023 WHO World malaria report. Lancet Microbe 2024, 3, e214. [Google Scholar] [CrossRef] [PubMed]
- Cerilo-Filho, M.; Arouca, M.d.L.; Medeiros, E.d.S.; Jesus, M.; Sampaio, M.P.; Reis, N.F.; Silva, J.R.S.; Baptista, A.R.S.; Storti-Melo, L.M.; Machado, R.L.D.; et al. Worldwide distribution, symptoms and diagnosis of the coinfections between malaria and arboviral diseases: A systematic review. Mem. Inst. Oswaldo Cruz 2024, 119, e240015. [Google Scholar] [CrossRef]
- Klepac, P.; Hsieh, J.L.; Ducker, C.L.; Assoum, M.; Booth, M.; Byrne, I.; Dodson, S.; Martin, D.L.; Turner, C.M.R.; van Daalen, K.R. Climate change, malaria and neglected tropical diseases: A scoping review. Trans. R. Soc. Trop. Med. Hyg. 2024, 118, 561–579. [Google Scholar] [CrossRef]
- Sugathan, A.; Rao, S.; Kumar, N.A.; Chatterjee, P. Malaria and Malignancies-A review. Glob. Biosecur. 2024, 6. [Google Scholar] [CrossRef]
- Patel, P.; Bagada, A.; Vadia, N. Epidemiology and Current Trends in Malaria. In Rising Contagious Diseases: Basics, Management, and Treatments; Amponsah, S.K., Shegokar, R., Pathak, Y.V., Eds.; Wiley: Hoboken, NJ, USA, 2024; pp. 261–282. [Google Scholar]
- Lashari, A.A.; Aly, S.; Hattaf, K.; Zaman, G.; Jung, I.H.; Li, X.-Z. Presentation of malaria epidemics using multiple optimal controls. J. Appl. Math. 2012, 2012, 946504. [Google Scholar] [CrossRef]
- Helikumi, M.; Lolika, P.O. Global dynamics of fractional-order model for malaria disease transmission. Asian Res. J. Math. 2022, 18, 82–110. [Google Scholar] [CrossRef]
- Al-Arydah, M.; Smith, R. Controlling malaria with indoor residual spraying in spatially heterogenous environments. Math. Biosci. Eng. 2011, 4, 889–914. [Google Scholar]
- Kimulu, A.M. Numerical Investigation of HIV/AIDS Dynamics Among the Truckers and the Local Community at Malaba and Busia Border Stops. Am. J. Comput. Appl. Math. 2023, 13, 6–16. [Google Scholar]
- Mhlanga, A.; Bhunu, C.P.; Mushayabasa, S. HSV-2 and Substance Abuse amongst Adolescents: Insights through Mathematical Modelling. J. Appl. Math. 2014, 2014, 104819. [Google Scholar] [CrossRef]
- Wilke, A.B.; Mhlanga, A.; Kummer, A.G.; Vasquez, C.; Moreno, M.; Petrie, W.D.; Rodriguez, A.; Vitek, C.; Hamer, G.L.; Mutebi, J.P.; et al. Diel activity patterns of vector mosquito species in the urban environment: Implications for vector control strategies. PLoS Negl. Trop. Dis. 2023, 17, e0011074. [Google Scholar] [CrossRef] [PubMed]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Ravichandran, C. A review of fractional order epidemic models for life sciences problems: Past, present and future. Alex. Eng. J. 2024, 95, 283–305. [Google Scholar] [CrossRef]
- Prasad, R.; Kumar, K.; Dohare, R. Caputo fractional order derivative model of Zika virus transmission dynamics. J. Math. Comput. Sci. 2023, 28, 145–157. [Google Scholar] [CrossRef]
- Ghanbari, B.; Atangana, A. A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing. Phys. A Stat. Mech. Its Appl. 2020, 542, 123516. [Google Scholar] [CrossRef]
- Saadeh, R.; Abdoon, M.A.; Qazza, A.; Berir, M.; Guma, F.E.L.; Al-Kuleab, N.; Degoot, A.M. Mathematical modeling and stability analysis of the novel fractional model in the Caputo derivative operator: A case study. Heliyon 2024, 5, e26611. [Google Scholar] [CrossRef]
- Kumar, P.; Baleanu, D.; Erturk, V.S.; Inc, M.; Govindaraj, V. A delayed plant disease model with Caputo fractional derivatives. Adv. Contin. Discret. Model. 2022, 2022, 11. [Google Scholar] [CrossRef]
- ul Rehman, A.; Singh, R.; Abdeljawad, T.; Okyere, E.; Guran, L. Modeling, analysis and numerical solution to malaria fractional model with temporary immunity and relapse. Adv. Differ. Equations 2021, 2021, 390. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Latha, V.P.; Rihan, F.A. A Fractional-Order Model for Zika Virus Infection with Multiple Delays. Wiley Online Libr. 2019, 1, 4178073. [Google Scholar] [CrossRef]
- Iheonu, N.O.; Nwajeri, U.K.; Omame, A. A non-integer order model for Zika and Dengue co-dynamics with cross-enhancement. Healthc. Anal. 2023, 4, 100276. [Google Scholar] [CrossRef]
- Momoh, A.A.; Fügenschuh, A. Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model. Oper. Res. Health Care 2018, 18, 99–111. [Google Scholar] [CrossRef]
- Helikumi, M.; Eustace, G.; Mushayabasa, S. Dynamics of a Fractional-Order Chikungunya Model with Asymptomatic Infectious Class. Comput. Math. Methods Med. 2022, 2022, 5118382. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.M.A.; Machado, J.A.T. Fractional model for malaria transmission under control strategies. Comput. Math. Appl. 2013, 5, 908–916. [Google Scholar] [CrossRef]
- Abioye, A.I.; Peter, O.J.; Ogunseye, H.A.; Oguntolu, F.A.; Ayoola, T.A.; Oladapo, A.O. A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics. Healthc. Anal. 2023, 4, 100210. [Google Scholar] [CrossRef] [PubMed]
- Kouidere, A.; El Bhih, A.; Minifi, I.; Balatif, O.; Adnaoui, K. Optimal control problem for mathematical modeling of Zika virus transmission using fractional order derivatives. Front. Appl. Math. Stat. 2024, 10, 1376507. [Google Scholar] [CrossRef]
- Ullah, M.S.; Higazy, M.; Kabir, K.M.A. Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach. Chaos Solitons Fractals 2022, 155, 111636. [Google Scholar] [CrossRef]
- Lusekelo, E.; Helikumi, M.; Kuznetsov, D.; Mushayabasa, S. Dynamic modelling and optimal control analysis of a fractional order chikungunya disease model with temperature effects. Results Control Optim. 2023, 10, 100206. [Google Scholar] [CrossRef]
- Atokolo, W.; Mbah Christopher Ezike, G. Modeling the control of zika virus vector population using the sterile insect technology. J. Appl. Math. 2020, 2020, 6350134. [Google Scholar] [CrossRef]
- Vargas-De-León, C. Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer.Simul. 2015, 24, 75–85. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 1967, 13, 529–539, Reprinted in Fract. Calc. Appl. Anal. 2008, 11, 4–14. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010; p. 247. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- van den Driessche, P.; Watmough, J. Reproduction number and subthreshold endemic equilibria for compartment models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Shuai, Z.; Heesterbeek, J.A.P.; van den Driessche, P. Extending the type reproduction number to infectious disease control targeting contact between types. J. Math. Biol. 2013, 67, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
- LaSalle, J.P. The Stability of Dynamical Systems; SIAM: Philadelphia, PA, USA, 1976. [Google Scholar]
- White, L.J.; Maude, R.J.; Pongtavornpinyo, W.; Saralamba, S.; Aguas, R.; Van Effelterre, T.; Day, N.P.J.; White, N.J. The role of simple mathematical models in malaria elimination strategy design. Malar. J. 2009, 8, 212. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Kamran, M.A.; Naeem Mannan, M.M.; Kim, S.; Jung, I.H. Impact of awareness to control malaria disease: A mathematical modeling approach. Complexity 2020, 2020, 8657410. [Google Scholar] [CrossRef]
Symbol | Definition | Value | Units | Source |
---|---|---|---|---|
disease transmission from mosquito to human | 0.001 | [9,38] | ||
disease transmission from human to mosquito | 0.0001 | [9,38] | ||
natural mortality rate of human | [9,38] | |||
natural mortality rate of vector | [9,38] | |||
progression rate of human, from incubation to infectious | 1/17 | [9,39] | ||
progression rate of vector, from incubation to infectious | 1/18 | [9,39] | ||
progression rate of human, from infectious to recovered class | [39] | |||
new recruitment of human | 10 | [9,38] | ||
new recruitment of Aedes mosquito | 50 | [39] | ||
progression rate of exposed human to recovered class | fitted | |||
Rate of use of insecticides | fitted | |||
Proportion of human progress to infectious class | fitted | |||
Rate of mosquito biting a human | 3 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helikumi, M.; Bisaga, T.; Makau, K.A.; Mhlanga, A. Modeling the Impact of Human Awareness and Insecticide Use on Malaria Control: A Fractional-Order Approach. Mathematics 2024, 12, 3607. https://doi.org/10.3390/math12223607
Helikumi M, Bisaga T, Makau KA, Mhlanga A. Modeling the Impact of Human Awareness and Insecticide Use on Malaria Control: A Fractional-Order Approach. Mathematics. 2024; 12(22):3607. https://doi.org/10.3390/math12223607
Chicago/Turabian StyleHelikumi, Mlyashimbi, Thobias Bisaga, Kimulu Ancent Makau, and Adquate Mhlanga. 2024. "Modeling the Impact of Human Awareness and Insecticide Use on Malaria Control: A Fractional-Order Approach" Mathematics 12, no. 22: 3607. https://doi.org/10.3390/math12223607
APA StyleHelikumi, M., Bisaga, T., Makau, K. A., & Mhlanga, A. (2024). Modeling the Impact of Human Awareness and Insecticide Use on Malaria Control: A Fractional-Order Approach. Mathematics, 12(22), 3607. https://doi.org/10.3390/math12223607