MFAN: Multi-Feature Attention Network for Breast Cancer Classification
Abstract
:1. Introduction
- Our Multi-Feature Attention Classification Network (MFAN) makes use of two ground-breaking modules: the Multi-Scale Spatial Channel Attention Module (McSCAM) and the Global–Local Attention Module for Feature Fusion. Both of these modules have unprecedented capabilities. The MFAN method solves the low classification accuracy of the NFSC method, which is caused by confined lesion zones and backdrops that are comparable.
- Concerning information loss in some dimensions during feature extraction, the McSCAM can perform comprehensive feature extraction. Thus, it learns about the dependency of the channel and allows for the expanding of the perception of depth-wise convolution to gain a better understanding of the model.
- The GLAM aggregates various scale features in the network and simultaneously adopts both global and local information by employing the dual attention branches. This module integrates characteristics from different scales and optimizes the information extraction step, improving the capability of the model to focus on subtle lesion regions, thus enhancing classification capacity.
2. Literature Review
3. Materials and Methods
3.1. Pre-Processing
3.2. Proposed Architecture
3.2.1. Network Overview
3.2.2. Multi-Scale Spatial Channel Attention Module
3.2.3. Multi-Global–Local Attention Module for Feature Fusion
3.3. Loss Function
4. Experiments
4.1. Dataset Description and Experimental Setup
4.2. Evaluation Metrics
4.3. Classification Results
4.3.1. Comparison with Pretrained Models
4.3.2. Comparison with Loss Function
4.3.3. Comparison with Different Scale Size of McSCAM
4.3.4. Analysis of Proposed Modules
4.3.5. Comparison with State-of-the-Art Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Ur Rehman, S.; Iqbal, A.; Farooq, R.K.; Shahid, A.; Ullah, M.I. Breast cancer research in Pakistan: A bibliometric analysis. Sage Open 2021, 11, 21582440211046934. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef]
- World Health Organization. WHO Position Paper on Mammography Screening; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Widiana, I.K.; Irawan, H. Clinical and subtypes of breast cancer in Indonesia. Asian Pac. J. Cancer Care 2020, 5, 281–285. [Google Scholar] [CrossRef]
- Nasir, I.M.; Raza, M.; Shah, J.H.; Wang, S.H.; Tariq, U.; Khan, M.A. HAREDNet: A deep learning based architecture for autonomous video surveillance by recognizing human actions. Comput. Electr. Eng. 2022, 99, 107805. [Google Scholar] [CrossRef]
- Nasir, I.M.; Rashid, M.; Shah, J.H.; Sharif, M.; Awan, M.Y.; Alkinani, M.H. An optimized approach for breast cancer classification for histopathological images based on hybrid feature set. Curr. Med. Imaging 2021, 17, 136–147. [Google Scholar] [CrossRef]
- Nasir, I.M.; Raza, M.; Shah, J.H.; Khan, M.A.; Rehman, A. Human action recognition using machine learning in uncontrolled environment. In Proceedings of the 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), Riyadh, Saudi Arabia, 6–7 April 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Nasir, I.M.; Raza, M.; Shah, J.H.; Khan, M.A.; Nam, Y.C.; Nam, Y. Improved Shark Smell Optimization Algorithm for Human Action Recognition. Comput. Mater. Contin. 2023, 76, 2667–2684. [Google Scholar]
- Nasir, I.M.; Raza, M.; Ulyah, S.M.; Shah, J.H.; Fitriyani, N.L.; Syafrudin, M. ENGA: Elastic Net-Based Genetic Algorithm for human action recognition. Expert Syst. Appl. 2023, 227, 120311. [Google Scholar] [CrossRef]
- Tehsin, S.; Nasir, I.M.; Damaševičius, R.; Maskeliūnas, R. DaSAM: Disease and Spatial Attention Module-Based Explainable Model for Brain Tumor Detection. Big Data Cogn. Comput. 2024, 8, 97. [Google Scholar] [CrossRef]
- Tehsin, S.; Hassan, A.; Riaz, F.; Nasir, I.M.; Fitriyani, N.L.; Syafrudin, M. Enhancing Signature Verification Using Triplet Siamese Similarity Networks in Digital Documents. Mathematics 2024, 12, 2757. [Google Scholar] [CrossRef]
- Malik, D.S.; Shah, T.; Tehsin, S.; Nasir, I.M.; Fitriyani, N.L.; Syafrudin, M. Block Cipher Nonlinear Component Generation via Hybrid Pseudo-Random Binary Sequence for Image Encryption. Mathematics 2024, 12, 2302. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, X.; Tan, Y.; Zhu, Y.; Wang, H.; Feng, R.; Tang, G.; Zhou, X.; Li, A.; Qiao, Y. A multicenter hospital-based diagnosis study of automated breast ultrasound system in detecting breast cancer among Chinese women. Chin. J. Cancer Res. 2018, 30, 231. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Al-Khateeb, B.; Rashid, A.N.; Ibrahim, D.A.; Abd Ghani, M.K.; Mostafa, S.A. Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Comput. Electr. Eng. 2018, 70, 871–882. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Xu, M.; Yu, J.; Qin, C.; Luo, X.; Yang, X.; Wang, T.; Li, A.; Ni, D. Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans. Med. Imaging 2019, 39, 866–876. [Google Scholar] [CrossRef]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef]
- Mambou, S.J.; Maresova, P.; Krejcar, O.; Selamat, A.; Kuca, K. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors 2018, 18, 2799. [Google Scholar] [CrossRef]
- Tehsin, S.; Rehman, S.; Saeed, M.O.B.; Riaz, F.; Hassan, A.; Abbas, M.; Young, R.; Alam, M.S. Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition. IEEE Access 2017, 5, 24495–24502. [Google Scholar] [CrossRef]
- Tehsin, S.; Rehman, S.; Bilal, A.; Chaudry, Q.; Saeed, O.; Abbas, M.; Young, R. Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter. In Proceedings of the Pattern Recognition and Tracking XXVIII, Anaheim, CA, USA, 9–13 April 2017; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Tehsin, S.; Rehman, S.; Riaz, F.; Saeed, O.; Hassan, A.; Khan, M.; Alam, M.S. Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments. In Proceedings of the Pattern Recognition and Tracking XXVIII, Anaheim, CA, USA, 9–13 April 2017; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Tehsin, S.; Asfia, Y.; Akbar, N.; Riaz, F.; Rehman, S.; Young, R. Selection of CPU scheduling dynamically through machine learning. In Proceedings of the Pattern Recognition and Tracking XXXI, Online, 27 April–9 May 2020; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Saad, S.M.; Bilal, A.; Tehsin, S.; Rehman, S. Spoof detection for fake biometric images using feature-based techniques. In Proceedings of the SPIE Future Sensing Technologies, Online, 9–13 November 2020; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Tehsin, S.; Rehman, S.; Awan, A.B.; Chaudry, Q.; Abbas, M.; Young, R.; Asif, A. Improved maximum average correlation height filter with adaptive log base selection for object recognition. In Proceedings of the Optical Pattern Recognition XXVII, Baltimore, MD, USA, 17–21 April 2016; SPIE: Bellingham, WA, USA, 2016. [Google Scholar]
- Akbar, N.; Tehsin, S.; Bilal, A.; Rubab, S.; Rehman, S.; Young, R. Detection of moving human using optimized correlation filters in homogeneous environments. In Proceedings of the Pattern Recognition and Tracking XXXI, Online, 27 April–9 May 2020; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Yousafzai, S.N.; Shahbaz, H.; Ali, A.; Qamar, A.; Nasir, I.M.; Tehsin, S.; Damaševičius, R. X-News dataset for online news categorization. Int. J. Intell. Comput. Cybern. 2024, 17, 737–758. [Google Scholar] [CrossRef]
- Akbar, N.; Tehsin, S.; ur Rehman, H.; Rehman, S.; Young, R. Hardware design of correlation filters for target detection. In Proceedings of the Pattern Recognition and Tracking XXX, Baltimore, MD, USA, 14–18 April 2019; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
- Asfia, Y.; Tehsin, S.; Shahzeen, A.; Khan, U.S. Visual person identification device using raspberry Pi. In Proceedings of the 25th Conference of FRUCT Association, Helsinki, Finland, 5–8 November 2019. [Google Scholar]
- Toğaçar, M.; Özkurt, K.B.; Ergen, B.; Cömert, Z. BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Phys. A Stat. Mech. Its Appl. 2020, 545, 123592. [Google Scholar] [CrossRef]
- Khan, S.; Islam, N.; Jan, Z.; Din, I.U.; Rodrigues, J.J.C. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 2019, 125, 1–6. [Google Scholar] [CrossRef]
- Liu, N.; Qi, E.S.; Xu, M.; Gao, B.; Liu, G.Q. A novel intelligent classification model for breast cancer diagnosis. Inf. Process. Manag. 2019, 56, 609–623. [Google Scholar] [CrossRef]
- Kalafi, E.Y.; Jodeiri, A.; Setarehdan, S.K.; Lin, N.W.; Rahmat, K.; Taib, N.A.; Ganggayah, M.D.; Dhillon, S.K. Classification of breast cancer lesions in ultrasound images by using attention layer and loss ensemble in deep convolutional neural networks. Diagnostics 2021, 11, 1859. [Google Scholar] [CrossRef] [PubMed]
- Byra, M. Breast mass classification with transfer learning based on scaling of deep representations. Biomed. Signal Process. Control. 2021, 69, 102828. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Zhou, W.; Chang, C.; Ying, S.; Shi, J. Deep Doubly Supervised Transfer Network for Diagnosis of Breast Cancer with Imbalanced Ultrasound Imaging Modalities. arXiv 2020, arXiv:2007.06634. [Google Scholar]
- Moon, W.K.; Lee, Y.W.; Ke, H.H.; Lee, S.H.; Huang, C.S.; Chang, R.F. Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput. Methods Programs Biomed. 2020, 190, 105361. [Google Scholar] [CrossRef]
- Hikmah, N.F.; Sardjono, T.A.; Mertiana, W.D.; Firdi, N.P.; Purwitasari, D. An image processing framework for breast cancer detection using multi-view mammographic images. EMITTER Int. J. Eng. Technol. 2022, 10, 136–152. [Google Scholar] [CrossRef]
- Alruwaili, M.; Gouda, W. Automated breast cancer detection models based on transfer learning. Sensors 2022, 22, 876. [Google Scholar] [CrossRef]
- Almalki, Y.E.; Soomro, T.A.; Irfan, M.; Alduraibi, S.K.; Ali, A. Computerized analysis of mammogram images for early detection of breast cancer. Healthcare 2022, 10, 801. [Google Scholar] [CrossRef]
- Dhar, T.; Dey, N.; Borra, S.; Sherratt, R.S. Challenges of deep learning in medical image analysis—Improving explainability and trust. IEEE Trans. Technol. Soc. 2023, 4, 68–75. [Google Scholar] [CrossRef]
- Wetstein, S.C.; de Jong, V.M.; Stathonikos, N.; Opdam, M.; Dackus, G.M.; Pluim, J.P.; van Diest, P.J.; Veta, M. Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images. Sci. Rep. 2022, 12, 15102. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Academic Press Professional, Inc.: San Diego, CA, USA, 1994; pp. 474–485. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Müller, R.; Kornblith, S.; Hinton, G.E. When does label smoothing help? Adv. Neural Inf. Process. Syst. 2019, 32, 1–17. [Google Scholar]
- Lee, R.S.; Gimenez, F.; Hoogi, A.; Miyake, K.K.; Gorovoy, M.; Rubin, D.L. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 2017, 4, 170177. [Google Scholar] [CrossRef] [PubMed]
- Heath, M.; Bowyer, K.; Kopans, D.; Kegelmeyer, P., Jr.; Moore, R.; Chang, K.; Munishkumaran, S. Current status of the digital database for screening mammography. In Digital Mammography: Nijmegen; Springer: Dordrecht, The Netherlands, 1998; pp. 457–460. [Google Scholar]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef]
- Sajid, U.; Khan, R.A.; Shah, S.M.; Arif, S. Breast cancer classification using deep learned features boosted with handcrafted features. Biomed. Signal Process. Control. 2023, 86, 105353. [Google Scholar] [CrossRef]
- Da Silva, D.S.; Nascimento, C.S.; Jagatheesaperumal, S.K.; Albuquerque, V.H.C.D. Mammogram image enhancement techniques for online breast cancer detection and diagnosis. Sensors 2022, 22, 8818. [Google Scholar] [CrossRef]
- Heenaye-Mamode Khan, M.; Boodoo-Jahangeer, N.; Dullull, W.; Nathire, S.; Gao, X.; Sinha, G.R.; Nagwanshi, K.K. Multi-class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN). PLoS ONE 2021, 16, e0256500. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzidis, L.; Koutla, P.; Costaridou, L.; Pratikakis, I. Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses. Comput. Methods Programs Biomed. 2021, 200, 105913. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, R.; Yuan, T.; Jiang, Z.; Huang, S.; Wu, J.; Hua, J.; Niu, Z.; Ji, D. DE-Ada*: A novel model for breast mass classification using cross-modal pathological semantic mining and organic integration of multi-feature fusions. Inf. Sci. 2020, 539, 461–486. [Google Scholar]
- Das, H.S.; Das, A.; Neog, A.; Mallik, S.; Bora, K.; Zhao, Z. Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach. Front. Genet. 2023, 13, 1097207. [Google Scholar] [CrossRef]
- Uysal, F.; Köse, M.M. Classification of breast cancer ultrasound images with deep learning-based models. Eng. Proc. 2022, 31, 8. [Google Scholar] [CrossRef]
Models | D1 | D2 | ||||||
---|---|---|---|---|---|---|---|---|
Acc (%) | Re (%) | Pre (%) | F1 (%) | Acc (%) | Re (%) | Pre (%) | F1 (%) | |
EfficientNetB2 | 84.54 | 83.13 | 86.12 | 83.84 | 81.72 | 80.45 | 82.67 | 78.32 |
MobileNetv2 | 76.49 | 74.89 | 77.56 | 75.77 | 83.97 | 81.77 | 84.99 | 80.54 |
DenseNet201 | 79.51 | 79.68 | 81.39 | 76.65 | 73.18 | 72.34 | 73.89 | 70.41 |
ShuffleNetv3 | 71.88 | 70.07 | 72.77 | 70.44 | 77.58 | 76.58 | 79.11 | 75.22 |
NasNetLarge | 82.16 | 81.84 | 83.51 | 80.61 | 76.88 | 76.23 | 77.63 | 76.39 |
Proposed | 98.67 | 98.16 | 99.42 | 97.79 | 98.21 | 98.06 | 99.36 | 98.01 |
Improvement | 14.13 | 15.03 | 13.30 | 13.95 | 14.24 | 16.29 | 16.29 | 17.47 |
Loss Function | D1 | D2 | ||
---|---|---|---|---|
Acc (%) | F1 (%) | Acc (%) | F1 (%) | |
Mean Square Error | 97.15 | 95.76 | 95.89 | 94.72 |
Mean Absolute Error | 96.44 | 95.21 | 97.64 | 95.99 |
Categorial Cross Entropy | 98.67 | 97.79 | 98.21 | 98.01 |
Scale | D1 | D2 | ||
---|---|---|---|---|
Acc (%) | F1 (%) | Acc (%) | F1 (%) | |
1,2,3 | 98.67 | 97.79 | 98.21 | 98.01 |
1,3,5 | 97.12 | 96.33 | 96.74 | 94.72 |
1,3,5,7 | 95.76 | 93.64 | 95.83 | 94.18 |
1,2,3,4,5 | 96.58 | 95.21 | 97.28 | 95.54 |
Baseline | McSCAM | GLAM | D1 | D2 | ||
---|---|---|---|---|---|---|
Acc (%) | F1 (%) | Acc (%) | F1 (%) | |||
✓ | 87.46 | 86.21 | 84.33 | 82.73 | ||
✓ | ✓ | 93.12 | 92.07 | 94.78 | 93.11 | |
✓ | ✓ | 91.87 | 89.99 | 95.02 | 93.46 | |
✓ | ✓ | ✓ | 98.67 | 97.79 | 98.21 | 98.01 |
Method | Dataset | Accuracy (%) |
---|---|---|
DCNN-based multi-class classification [51] | D1 | 88.00 |
Integrating Segmentation with CNN [52] | D1 | 77.60 |
Deep features fused with local features [49] | D1 | 91.50 |
Cross-model semantic mining [53] | D1 | 87.05 |
Shallow CNN [54] | D1 | 89.20 |
Proposed | D1 | 98.67 |
Deep learning-based model [55] | D2 | 85.83 |
Image enhancement techniques for detection [50] | D2 | 96.69 |
Proposed | D2 | 98.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasir, I.M.; Alrasheedi, M.A.; Alreshidi, N.A. MFAN: Multi-Feature Attention Network for Breast Cancer Classification. Mathematics 2024, 12, 3639. https://doi.org/10.3390/math12233639
Nasir IM, Alrasheedi MA, Alreshidi NA. MFAN: Multi-Feature Attention Network for Breast Cancer Classification. Mathematics. 2024; 12(23):3639. https://doi.org/10.3390/math12233639
Chicago/Turabian StyleNasir, Inzamam Mashood, Masad A. Alrasheedi, and Nasser Aedh Alreshidi. 2024. "MFAN: Multi-Feature Attention Network for Breast Cancer Classification" Mathematics 12, no. 23: 3639. https://doi.org/10.3390/math12233639
APA StyleNasir, I. M., Alrasheedi, M. A., & Alreshidi, N. A. (2024). MFAN: Multi-Feature Attention Network for Breast Cancer Classification. Mathematics, 12(23), 3639. https://doi.org/10.3390/math12233639