Soliton Solutions to Sasa–Satsuma-Type Modified Korteweg–De Vries Equations by Binary Darboux Transformations
Abstract
:1. Introduction
2. SS-Type Integrable Matrix mKdV Models
2.1. The Integrable Matrix AKNS Hierarchy Revisited
2.2. AKNS Integrable Matrix mKdV Models
2.3. SS-Type Integrable Matrix AKNS Equations
2.4. SS-Type Integrable mKdV Equations
3. Binary Darboux Transformations
3.1. Distribution of Eigenvalues
3.2. Darboux Matrices
- (i)
- A spectral characteristic identity
- (ii)
- When an orthogonality
3.3. Binary Darboux Transformations
3.4. N-fold Decomposition Feature
4. Soliton Solutions
5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Calogero, F.; Degasperis, A. Solitons and Spectral Transform I; North-Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Consultants Bureau: New York, NY, USA, 1984. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Gu, C.H.; Hu, H.S.; Zhou, Z.X. Darboux Transformations in Integrable Systems; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Ma, W.X. An integrated integrable hierarchy arising from a broadened Ablowitz–Kaup–Newell–Segur scenario. Axioms 2024, 13, 563. [Google Scholar] [CrossRef]
- Mañas, M. Darboux transformations for the nonlinear Schrödinger equations. J. Phys. A Math. Gen. 1996, 29, 7721–7737. [Google Scholar] [CrossRef]
- Zeng, Y.B.; Ma, W.X.; Shao, Y.J. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J. Math. Phys. 2001, 42, 2113–2128. [Google Scholar] [CrossRef]
- Doktorov, E.V.; Leble, S.B. A Dressing Method in Mathematical Physics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Zhang, H.Q.; Wang, Y.; Ma, W.X. Binary Darboux transformation for the coupled SS equations. Chaos 2017, 27, 073102. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, R.S.; Ma, W.X. Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg-de Vries equations. Math. Methods Appl. Sci. 2020, 43, 613–627. [Google Scholar] [CrossRef]
- Xu, L.; Wang, D.S.; Wen, X.Y.; Jiang, Y.L. Exotic localized vector waves in a two-component nonlinear wave system. J. Nonlinear Sci. 2020, 30, 537–564. [Google Scholar] [CrossRef]
- Geng, X.G.; Li, Y.H.; Wei, J.; Zhai, Y.Y. Darboux transformation of a two-component generalized SS equation and explicit. Math. Methods Appl. Sci. 2021, 44, 12727–12745. [Google Scholar] [CrossRef]
- Ma, W.X. A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. Mod. Phys. Lett. B. 2022, 36, 2250094. [Google Scholar] [CrossRef]
- Degasperis, A.; Lombardo, S. Multicomponent integrable wave equations: I. Darboux-dressing transformation. J. Phys. A Math Theor. 2007, 40, 961–977. [Google Scholar] [CrossRef]
- Degasperis, A.; Lombardo, S. Multicomponent integrable wave equations: II. Soliton solutions. J. Phys. A Math Theor. 2009, 42, 385206. [Google Scholar] [CrossRef]
- Li, R.M.; Geng, X.G. A matrix Yajima-Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions. Commun. Nonlinear Sci. Numer. Simul. 2020, 90, 105408. [Google Scholar] [CrossRef]
- Fordy, A.P.; Kulish, P.P. Nonlinear Schrödinger equations and simple Lie algebras. Commun. Math. Phys. 1983, 89, 427–443. [Google Scholar] [CrossRef]
- Gerdjikov, V.S.; Kaup, D.J.; Kostov, N.A.; Valchev, T.I. On classification of soliton solutions of multicomponent nonlinear evolution equations. J. Phys. A Math. Theor. 2008, 41, 315213. [Google Scholar] [CrossRef]
- Ma, W.X. Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math. Meth. Appl. Sci. 2019, 42, 1099–1113. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A Math. Gen. 1989, 22, 2375–2392. [Google Scholar]
- Sasa, N.; Satsuma, J. New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 1991, 60, 409–417. [Google Scholar] [CrossRef]
- Ling, L.M. The algebraic representation for high order solution of SS equation. Discrete Contin. Dyn. Syst. Ser. S 2016, 9, 1975–2010. [Google Scholar] [CrossRef]
- Geng, X.G.; Chen, M.M.; Wang, K.D. Application of the nonlinear steepest descent method to the coupled SS equation. East Asian J. Appl. Math. 2020, 11, 181–206. [Google Scholar] [CrossRef]
- Wang, X.B.; Han, B. The nonlinear steepest descent approach for long time behavior of the two-component coiupled SS equation with a 5 × 5 Lax pair. Taiwan J. Math. 2020, 25, 381–407. [Google Scholar]
- Xu, S.Q.; Li, R.M.; Geng, X.G. Riemann-Hilbert method for the three-component SS equation and its N-soliton solutions. Rep. Math. Phys. 2020, 85, 77–103. [Google Scholar] [CrossRef]
- Ma, W.X. SS type matrix integrable hierarchies and their Riemann-Hilbert problems and soliton solutions. Phys. D 2023, 446, 133672. [Google Scholar] [CrossRef]
- Du, Z.; Zhao, X.J. Vector localized and periodic waves for the matrix Hirota equation with sign-alternating nonlinearity via the binary Darboux transformation. Phys. Fluids 2023, 35, 075108. [Google Scholar]
- Kawata, T. Riemann spectral method for the nonlinear evolution equation. In Advances in Nonlinear Waves; Debnath, L., Ed.; Pitman: Boston, MA, USA, 1984; Volume I, pp. 210–225. [Google Scholar]
- Yang, J. Nonlinear Waves in Integrable and Nonintegrable Systems; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Wu, J.P. Spectral and soliton structures of the Sasa–Satsuma higher-order nonlinear Schrödinger equation. Anal. Math. Phys. 2021, 11, 97. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, Y.H.; Wang, F.D.; Zhang, Y.; Ding, L.Y. Binary Darboux transformation of vector nonlocal reverse-space nonlinear Schrödinger equations. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450182. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 2013, 110, 064105. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 2018, 59, 051501. [Google Scholar] [CrossRef]
- Fokas, A.S. Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 2016, 29, 319–324. [Google Scholar] [CrossRef]
- Song, C.Q.; Xiao, D.M.; Zhu, Z.N. Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 2017, 45, 13–28. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 2016, 29, 915–946. [Google Scholar] [CrossRef]
- Bai, Y.S.; Zhang, L.N.; Ma, W.X.; Yun, Y.S. Hirota bilinear approach to multi-component nonlocal nonlinear Schrödinger equations. Mathematics 2024, 12, 2594. [Google Scholar] [CrossRef]
- Hu, B.B.; Zhang, L.; Shen, Z.Y. Nonlocal combined nonlinear Schrödinger-Gerdjikov-Ivanov model: Integrability, Riemann-Hilbert problem with simple and double poles, Cauchy problem with step-like initial data. J. Math. Phys. 2024, 65, 103501. [Google Scholar] [CrossRef]
- Ma, W.X. A combined derivative nonlinear Schrödinger soliton hierarchy. Rep. Math. Phys. 2024, 93, 313–325. [Google Scholar] [CrossRef]
- Ma, W.X. A combined generalized Kaup-Newell soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure. Theor. Math. Phys. 2024, 221, 1603–1614. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-X. Soliton Solutions to Sasa–Satsuma-Type Modified Korteweg–De Vries Equations by Binary Darboux Transformations. Mathematics 2024, 12, 3643. https://doi.org/10.3390/math12233643
Ma W-X. Soliton Solutions to Sasa–Satsuma-Type Modified Korteweg–De Vries Equations by Binary Darboux Transformations. Mathematics. 2024; 12(23):3643. https://doi.org/10.3390/math12233643
Chicago/Turabian StyleMa, Wen-Xiu. 2024. "Soliton Solutions to Sasa–Satsuma-Type Modified Korteweg–De Vries Equations by Binary Darboux Transformations" Mathematics 12, no. 23: 3643. https://doi.org/10.3390/math12233643
APA StyleMa, W. -X. (2024). Soliton Solutions to Sasa–Satsuma-Type Modified Korteweg–De Vries Equations by Binary Darboux Transformations. Mathematics, 12(23), 3643. https://doi.org/10.3390/math12233643