An Attribute Graph Embedding Algorithm for Sensing Topological and Attribute Influence
Abstract
:1. Introduction
2. Related Work
3. Attribute Graph Embedding Algorithms for Perceptual Topology and Attribute Influence
3.1. Definition of the Problem and Description of Relevant Symbols
3.2. The TAGE Model
3.2.1. Graph Sampling
Algorithm 1 Graph sampling algorithm for the TAGE model |
Inputs: attribute map , feature matrix , sample metric , batch size b, step size d Output: sampling map
|
3.2.2. Attribute Aggregation Module
3.2.3. Topology Aggregation Module
3.2.4. Interaction Module
3.2.5. Graph Decoder
Algorithm 2 Attribute graph embedding algorithm for perceiving topological and attribute influence |
Inputs: attribute map , adjacency matrix A, feature matrix X, Sampler Output: node embedding of the attribute graph
|
4. Experiments
4.1. Experimental Setup
4.1.1. Experimental Dataset
4.1.2. Baseline Algorithm
4.1.3. Hyperparameter Settings
4.2. TAGE Model Node Classification Experiment
4.3. TAGE Model Node Clustering Experiments
4.4. TAGE Model Ablation Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Ng, M.K. Hypergraph Convolution on Nodes-Hyperedges Network for Semi-Supervised Node Classification. ACM Trans. Knowl. Discov. Data 2022, 16, 1–19. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, Z.; Xiong, W.; Chen, L.; Jing, E. An efficient attribute graph clustering method. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2013. [Google Scholar]
- Huang, L.; Li, D.; Ma, Y. A meta path-based link prediction model for heterogeneous information networks. Chin. J. Comput. 2014, 37, 848–858. [Google Scholar]
- Hu, W.; Peng, C.; Liang, J. A social network event detection method based on link prediction. J. Softw. 2015, 26, 2339–2355. [Google Scholar] [CrossRef]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef]
- Baptista, A.; Sanchez-Garcia, R.; Baudot, A.; Bianconi, G. Zoo guide to network embedding. J. Phys. Complex. 2023, 4, 042001. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Los Angeles, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef]
- Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2001, 14, 849–856. [Google Scholar]
- Yang, F.; Zhang, H.; Tao, S.; Fan, X. Simple hierarchical PageRank graph neural networks. J. Supercomput. 2023, 80, 5509–5539. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Li, X. Decouple Graph Neural Networks: Train Multiple Simple GNNs Simultaneously Instead of One. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 7451–7462. [Google Scholar] [CrossRef]
- Makarov, I.; Kiselev, D.; Nikitinsky, N.; Subelj, L. Survey on graph embeddings and their applications to machine learning problems on graphs. PeerJ Comput. Sci. 2021, 7, e357. [Google Scholar] [CrossRef]
- Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1105–1114. [Google Scholar]
- Luo, D.; Nie, F.; Huang, H.; Ding, C.H. Cauchy graph embedding. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 553–560. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30, 1025–1035. [Google Scholar]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of the International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2017; pp. 1263–1272. [Google Scholar]
- Wang, J.; Qu, X.; Bai, J.; Li, Z.; Zhang, J.; Gao, J. SAGES: Scalable attributed graph embedding with sampling for unsupervised learning. IEEE Trans. Knowl. Data Eng. 2022, 35, 5216–5229. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state materials science. Npj Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations by mutual information estimation and maximization. arXiv 2018, arXiv:1808.06670. [Google Scholar]
- Veličković, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep graph infomax. arXiv 2018, arXiv:1809.10341. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Zhao, D.; Zhao, D.; Sun, M.; Chang, E.Y. Network representation learning with rich text information. In Proceedings of the IJCAI, Buenos Aires, Argentina, 25–31 July 2015; pp. 2111–2117. [Google Scholar]
- Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308. [Google Scholar]
- Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially regularised graph autoencoder for graph embedding. arXiv 2018, arXiv:1802.04407. [Google Scholar]
- Park, J.; Lee, M.; Chang, H.J.; Lee, K.; Choi, J.Y. Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6519–6528. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
Notation | Definition |
---|---|
Undirected attribute map (math.) | |
V | The set of nodes of the attribute graph |
E | Edge set of the attribute graph |
A | The adjacency matrix of the attribute map |
X | The identity matrix of the attribute map |
Y | The node labeling matrix of the attribute graph |
T | Tag collection |
Z | Figure node embedding matrix obtained from the self-encoder |
Node embedding matrix for layer l encoder | |
The set of neighbors of node i | |
The set of neighborhoods of number of nodes, edges, features and graph neural networks | |
F | The dimension of the node feature matrix X |
The dimension of the potential node embedding | |
Node embedding dimension of layer l encoder/decoder | |
Layer-specific transformation matrices | |
Neighborhood embedding of node i |
Data Set | Number of Nodes | Number of Sides | Label Count | Characteristic Number (Math.) |
---|---|---|---|---|
ACM | 3025 | 6454 | 3 | 1870 |
DBLP | 3890 | 2,347,227 | 4 | 334 |
Amazon | 5004 | 27,313 | 5 | 354 |
Flickr | 89,250 | 899,756 | 7 | 500 |
Modeling | ACM | DBLP | Amazon | Flickr | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | |
K-means | 0.511 | 0.309 | 0.242 | 0.482 | 0.452 | 0.321 | 0.565 | 0.324 | 0.328 | 0.431 | 0.485 | 0.209 |
Spectral | 0.513 | 0.256 | 0.204 | 0.407 | 0.415 | 0.317 | 0.509 | 0.332 | 0.312 | 0.418 | 0.479 | 0.206 |
TADW | 0.529 | 0.484 | 0.347 | 0.417 | 0.346 | 0.275 | 0.536 | 0.344 | 0.312 | 0.437 | 0.412 | 0.070 |
GAE | 0.619 | 0.363 | 0.663 | 0.515 | 0.382 | 0.319 | 0.589 | 0.361 | 0.358 | 0.529 | 0.399 | 0.378 |
VGAE | 0.571 | 0.459 | 0.415 | 0.535 | 0.406 | 0.324 | 0.692 | 0.398 | 0.346 | 0.596 | 0.465 | 0.291 |
ARGA | 0.642 | 0.435 | 0.566 | 0.537 | 0.409 | 0.331 | 0.715 | 0.402 | 0.353 | 0.598 | 0.467 | 0.314 |
ARVGA | 0.658 | 0.497 | 0.391 | 0.668 | 0.563 | 0.479 | 0.693 | 0.359 | 0.345 | 0.635 | 0.397 | 0.214 |
GALA | 0.692 | 0.536 | 0.496 | 0.711 | 0.616 | 0.542 | 0.716 | 0.410 | 0.420 | 0.702 | 0.440 | 0.316 |
TAGE | 0.702 | 0.544 | 0.513 | 0.728 | 0.621 | 0.529 | 0.697 | 0.425 | 0.436 | 0.616 | 0.410 | 0.324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Zhang, S.; Zhao, Y.; Xie, M.; Wang, D. An Attribute Graph Embedding Algorithm for Sensing Topological and Attribute Influence. Mathematics 2024, 12, 3644. https://doi.org/10.3390/math12233644
Chen D, Zhang S, Zhao Y, Xie M, Wang D. An Attribute Graph Embedding Algorithm for Sensing Topological and Attribute Influence. Mathematics. 2024; 12(23):3644. https://doi.org/10.3390/math12233644
Chicago/Turabian StyleChen, Dongming, Shuyue Zhang, Yumeng Zhao, Mingzhao Xie, and Dongqi Wang. 2024. "An Attribute Graph Embedding Algorithm for Sensing Topological and Attribute Influence" Mathematics 12, no. 23: 3644. https://doi.org/10.3390/math12233644
APA StyleChen, D., Zhang, S., Zhao, Y., Xie, M., & Wang, D. (2024). An Attribute Graph Embedding Algorithm for Sensing Topological and Attribute Influence. Mathematics, 12(23), 3644. https://doi.org/10.3390/math12233644