Analyzing Decision-Making in Cognitive Agent Simulations Using Generalized Linear Mixed-Effects Models
Abstract
:1. Introduction
1.1. Objective
1.2. Novelty
1.3. The Outline
2. Related Work
3. Methods and Materials
3.1. Simulation Model
3.1.1. The Highway
3.1.2. The Vehicles
3.1.3. The Agents, Their Knowledge and Learning Approaches
- Attempt to cross the highway;
- Wait at the crossing point;
- Move along the highway to a neighbouring crossing point, referred to as “Horizontal Movement” in the presented simulations.
3.1.4. The Agents’ Decisions and the Model Simulation Loop
- Correct Crossing Decision (CCD): The active agent decided to cross the highway and did so successfully.
- Incorrect Crossing Decision (ICD): The active agent decided to cross but was struck by an oncoming vehicle.
- Correct Waiting Decision (CWD): The active agent decided to wait, which was the correct choice, as crossing would have resulted in being hit by an oncoming vehicle.
- Incorrect Waiting Decision (IWD): The active agent decided to wait, but if it had crossed, it would have done so successfully.
- Generating vehicles at the start of the highway based on the Car Creation Probability.
- Generating agents at each crossing point (CP) with their attributes of Fear and Desire.
- Updating vehicle speeds according to the modified Nagel–Schreckenberg model.
- Moving active agents from their CP queues onto the highway when the decision algorithm indicates they should cross.
- Updating vehicle locations on the highway and checking whether any active agent has been hit.
- Advancing the current time step.
3.2. Experimental Setting and Simulated Data
- CCP (Car Creation Probability): This parameter determines the density of cars’ traffic and varies between the following values: 0.1, 0.3, 0.5, 0.7, and 0.9.
- RD (Random Deceleration): If RD = 1, each car has a probability of 0.5 of randomly decreasing its speed by 1 unit; if RD = 0, this is not allowed. The RD parameter simulates erratic drivers in the model.
- HM (Horizontal Movement): This parameter takes values of 0 or 1. It determines whether active agents can move along the highway, away from their CPs, when they decide to wait. Active agents can “move horizontally” only when HM = 1. In the simulations, an active agent can move one cell per time step, and the maximum distance from its CP is 5 cells in both directions. Thus, when HM = 1, up to 11 active agents may be making crossing decisions simultaneously. When HM = 0, active agents are not allowed to move or change their CPs.
- KBT (Knowledge Base Transfer): This parameter takes values of 0 or 1. The KBT parameter determines if the KB table from agents at a lower CCP value is transferred at the end of a simulation run to agents in the following simulation run with an immediately higher CCP value. If KBT = 0, no transfer occurs; if KBT = 1, the KB table is transferred between simulation runs.
- Fear Parameter: This parameter reflects an agent’s risk aversion.
- Desire Parameter: This parameter reflects an agent’s propensity for risk taking.
- Time: In this column is recorded each time step in each simulation repeat.
- CCD, CWD, ICD, IWD: These columns, respectively, record the numbers of correct crossing decisions, correct waiting decisions, incorrect crossing decisions, and incorrect waiting decisions at each time step in each simulation repeat.
- Rep: Records the repetition number for each simulation setup.
- CCP, Fear, Desire, KBT, RD, HM: These columns record the values of the respective parameters: 5 values for CCP, 5 for Fear, 5 for Desire, 2 for KBT, 2 for RD, and 2 values for HM.
3.3. Discussion of the Simulation Model and Its Potential Extensions
3.4. Effects of Parameters Using Linear Mixed-Effects Models
3.5. Modelling the Effects of Parameters Using Generalized Linear Mixed-Effects Models
4. Results
4.1. Results of Linear Mixed-Effects Modelling of Cognitive Agent Decisions
4.2. Results of Generalized Linear Mixed-Effects Modelling of Cognitive Agent Decisions
5. Comparison with Artificial Neural Network Model Approach
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ANNs | Artificial Neural Networks |
XAI | Explainable AI |
LMs | Linear Models |
LMMs | Linear Mixed-Effects Models |
GLMs | Generalized Linear Models |
GLMMs | Generalized Linear Mixed-Effects Models |
CA | Cellular Automaton |
CCP | Car Creation Probability |
RD | Random Deceleration |
HM | Horizontal Movement |
KBT | Knowledge Base Transfer |
CCD | Correct Crossing Decision |
ICD | Incorrect Crossing Decision |
CWD | Correct Waiting Decision |
IWD | Incorrect Waiting Decision |
cDF | Crossing-based Decision Formula |
cwDF | Crossing-and-Waiting-Based Decision Formula |
DF | Decision Formula |
AV | Autonomous Vehicle |
References
- Bar-Yam, Y. Dynamics of Complex Systems; Reading, Addison-Wesley: Boston, MA, USA, 1997. [Google Scholar]
- Flake, G.W. The Computational Beauty of Nature; A Bradford Book; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Lempert, R.J. A new decision sciences for complex systems. Proc. Natl. Acad. Sci. USA 2002, 99, 7309–7313. [Google Scholar] [CrossRef]
- Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals; The MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Boccara, N. Modeling Complex Systems Springer: New York, NY, USA, 2010.
- Hoekstra, A.G.; Kroc, J.; Sloot, P.M. Simulating Complex Systems by Cellular Automata; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Schadschneider, A.; Chowdhury, D.; Nishinari, K. Stochastic Transport in Complex Systems: From Molecules to Vehicles; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Treiber, M.; Kesting, A. Traffic Flow Dynamics: Data, Models and Simulation; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Heath, B.; Hill, R. Some insights into the emergence of agent-based modeling. In Agent-Based Modeling and Simulation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 32–44. [Google Scholar]
- Wilensky, U.; Rand, W. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Sayama, H. Introduction to the Modeling and Analysis of Complex Systems; Open SUNY Textbooks: Geneseo, NY, USA, 2015. [Google Scholar]
- Magnani, L.; Bertolotti, T. Springer Handbook of Model-Based Science; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Vlachas, P.R.; Arampatzis, G.; Uhler, C.; Koumoutsakos, P. Multiscale simulations of complex systems by learning their effective dynamics. Nat. Mach. Intell. 2022, 4, 359–366. [Google Scholar] [CrossRef]
- Karaca, Y.; Baleanu, D.; Zhang, Y.D.; Gervasi, O.; Moonis, M. Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Campilho, R.D.; Silva, F.J. Industrial Process Improvement by Automation and Robotics. Machines 2023, 11, 1011. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Mikolajczyk, T. Manufacturing using robot. Adv. Mater. Res. 2012, 463, 1643–1646. [Google Scholar] [CrossRef]
- Goel, R.; Gupta, P. Robotics and industry 4.0. In A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 157–169. [Google Scholar]
- Arinez, J.F.; Chang, Q.; Gao, R.X.; Xu, C.; Zhang, J. Artificial intelligence in advanced manufacturing: Current status and future outlook. J. Manuf. Sci. Eng. 2020, 142, 110804. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A survey on AI-driven digital twins in industry 4.0: Smart manufacturing and advanced robotics. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef] [PubMed]
- Pillai, R.; Sivathanu, B.; Mariani, M.; Rana, N.P.; Yang, B.; Dwivedi, Y.K. Adoption of AI-empowered industrial robots in auto component manufacturing companies. Prod. Plan. Control 2022, 33, 1517–1533. [Google Scholar] [CrossRef]
- Chryssolouris, G.; Alexopoulos, K.; Arkouli, Z. Artificial intelligence in manufacturing equipment, automation, and robots. In A Perspective on Artificial Intelligence in Manufacturing; Springer: Berlin/Heidelberg, Germany, 2023; pp. 41–78. [Google Scholar]
- Holland, J.; Kingston, L.; McCarthy, C.; Armstrong, E.; O’Dwyer, P.; Merz, F.; McConnell, M. Service robots in the healthcare sector. Robotics 2021, 10, 47. [Google Scholar] [CrossRef]
- Ribeiro, J.; Lima, R.; Eckhardt, T.; Paiva, S. Robotic process automation and artificial intelligence in industry 4.0—A literature review. Procedia Comput. Sci. 2021, 181, 51–58. [Google Scholar] [CrossRef]
- Marshall, J.A.; Bonchis, A.; Nebot, E.; Scheding, S. Robotics in mining. In Springer Handbook of Robotics; Springer: Cham, Switzerland, 2016; pp. 1549–1576. [Google Scholar]
- Corrigan, C.C.; Ikonnikova, S.A. A review of the use of AI in the mining industry: Insights and ethical considerations for multi-objective optimization. Extr. Ind. Soc. 2024, 17, 101440. [Google Scholar] [CrossRef]
- Hussain, A.; Malik, A.; Halim, M.U.; Ali, A.M. The use of robotics in surgery: A review. Int. J. Clin. Pract. 2014, 68, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 1–23. [Google Scholar] [CrossRef]
- Seeni, A.; Schäfer, B.; Hirzinger, G. Robot mobility systems for planetary surface exploration–state-of-the-art and future outlook: A literature survey. Aerosp. Technol. Adv. 2010, 492, 189–208. [Google Scholar]
- Zaoui, A.; Tchuente, D.; Wamba, S.F.; Kamsu-Foguem, B. Impact of artificial intelligence on aeronautics: An industry-wide review. J. Eng. Technol. Manag. 2024, 71, 101800. [Google Scholar] [CrossRef]
- Hehenberger, P.; Vogel-Heuser, B.; Bradley, D.; Eynard, B.; Tomiyama, T.; Achiche, S. Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Comput. Ind. 2016, 82, 273–289. [Google Scholar] [CrossRef]
- Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Number 1; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Navarro, I.; Matía, F. An introduction to swarm robotics. ISRN Robot. 2013, 2013, 608164. [Google Scholar] [CrossRef]
- Khan, M.M.; Kasmarik, K.; Barlow, M. Autonomous detection of collective behaviours in swarms. Swarm Evol. Comput. 2020, 57, 100715. [Google Scholar] [CrossRef]
- Bredeche, N.; Fontbonne, N. Social learning in swarm robotics. Philos. Trans. R. Soc. B 2022, 377, 20200309. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Huo, M.; Fan, Y. From animal collective behaviors to swarm robotic cooperation. Natl. Sci. Rev. 2023, 10, nwad040. [Google Scholar] [CrossRef] [PubMed]
- Blais, M.A.; Akhloufi, M.A. Reinforcement learning for swarm robotics: An overview of applications, algorithms and simulators. Cogn. Robot. 2023, 3, 226–256. [Google Scholar] [CrossRef]
- Lawniczak, A.T.; Di Stefano, B.N.; Ernst, J.B. Software implementation of population of cognitive agents learning to cross a highway. In Cellular Automata: 11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland, 22–25 September 2014, Proceedings 11; Springer: Berlin/Heidelberg, Germany, 2014; pp. 688–697. [Google Scholar]
- Lawniczak, A.T.; Ernst, J.B.; Di Stefano, B.N. Biomimicry Based Learning Outcomes of Simple Cognitive Agents. Procedia Comput. Sci. 2014, 36, 508–514. [Google Scholar] [CrossRef]
- Alonso, E.; d’Inverno, M.; Kudenko, D.; Luck, M.; Noble, J. Learning in multi-agent systems. Knowl. Eng. Rev. 2001, 16, 277–284. [Google Scholar] [CrossRef]
- Lawniczak, A.T.; Ly, L.; Yu, F. Success rate of creatures crossing a highway as a function of model parameters. Procedia Comput. Sci. 2016, 80, 542–553. [Google Scholar] [CrossRef]
- Lawniczak, A.T.; Ly, L.; Yu, F. Effects of Simulation Parameters on Naïve Creatures Learning to Safely Cross a Highway on Bimodal Threshold Nature of Success. Procedia Comput. Sci. 2016, 80, 2382–2386. [Google Scholar] [CrossRef]
- Lawniczak, A.T.; Yu, F. Comparison of Agents’ Performance in Learning to Cross a Highway for Two Decisions Formulas. In Proceedings of the International Conference on Agents and Artificial Intelligence, Porto, Portugal, 24–26 February 2017; Scitepress: Setúbal, Portugal, 2017; Volume 2, pp. 208–219. [Google Scholar]
- Lawniczak, A.T.; Yu, F. Decisions and success of heterogeneous population of agents in learning to cross a highway. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–10. [Google Scholar]
- Lawniczak, A.T.; Yu, F. Analysis of rates of agents’ decisions in learning to cross a highway in populations with risk takers and risk avoiders. In Cellular Automata, Proceedings of the 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018, Como, Italy, 17–21 September 2018, Proceedings 13; Springer: Berlin/Heidelberg, Germany, 2018; pp. 177–184. [Google Scholar]
- Xie, S.; Lawniczak, A.T.; Gan, C. Modeling and Analysis of Autonomous Agents’ Decisions in Learning to Cross a Cellular Automaton-Based Highway. Computation 2019, 7, 53. [Google Scholar] [CrossRef]
- Xie, S.; Lawniczak, A.T.; Hao, J. Modelling Autonomous Agents’ Decisions in Learning to Cross a Cellular Automaton-Based Highway via Artificial Neural Networks. Computation 2020, 8, 64. [Google Scholar] [CrossRef]
- Xie, S.; Lawniczak, A.T.; Gan, C. Optimal number of clusters in explainable data analysis of agent-based simulation experiments. J. Comput. Sci. 2022, 62, 101685. [Google Scholar] [CrossRef]
- Qi, D.; Majda, A.J. Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. USA 2020, 117, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Hu, F.; Liu, Y.; Witherell, P.; Wang, C.C.; Rosen, D.W.; Simpson, T.W.; Lu, Y.; Tang, Q. Research and application of machine learning for additive manufacturing. Addit. Manuf. 2022, 52, 102691. [Google Scholar] [CrossRef]
- Xue, T.; Li, X.; Chen, X.; Chen, L.; Han, Z. Machine learning phases in swarming systems. Mach. Learn. Sci. Technol. 2023, 4, 015028. [Google Scholar] [CrossRef]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Seely, A.J.; Macklem, P.T. Complex systems and the technology of variability analysis. Crit. Care 2004, 8, 1–18. [Google Scholar] [CrossRef]
- Salnikov, V.; Cassese, D.; Lambiotte, R. Simplicial complexes and complex systems. Eur. J. Phys. 2018, 40, 014001. [Google Scholar] [CrossRef]
- Goh, A.T. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [Google Scholar] [CrossRef]
- Almeida, J.S. Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol. 2002, 13, 72–76. [Google Scholar] [CrossRef]
- Alanis, A.Y.; Arana-Daniel, N.; Lopez-Franco, C. Artificial Neural Networks for Engineering Applications; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 80–89. [Google Scholar]
- Bibal, A.; Frénay, B. Interpretability of machine learning models and representations: An introduction. In Proceedings of the 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 27–29 April 2016; CIACO: San Jose, CA, USA, 2016; pp. 77–82. [Google Scholar]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable ai: A review of machine learning interpretability methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Lawniczak, A.T.; Yu, F. Cognitive Agents Success in Learning to Cross a CA Based Highway Comparison for Two Decision Formulas. Procedia Comput. Sci. 2017, 108, 2443–2447. [Google Scholar] [CrossRef]
- Hernández, Q.; Badías, A.; Chinesta, F.; Cueto, E. Port-metriplectic neural networks: Thermodynamics-informed machine learning of complex physical systems. Comput. Mech. 2023, 72, 553–561. [Google Scholar] [CrossRef]
- Mari, C.; Mari, E. Occam’s razor, machine learning and stochastic modeling of complex systems: The case of the Italian energy market. Qual. Quant. 2023, 58, 1093–1111. [Google Scholar] [CrossRef]
- Raman, R.; Gupta, N.; Jeppu, Y. Framework for Formal Verification of Machine Learning Based Complex System-of-Systems. Insight 2023, 26, 91–102. [Google Scholar] [CrossRef]
- Korecki, M. Deep reinforcement meta-learning and self-organization in complex systems: Applications to traffic signal control. Entropy 2023, 25, 982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, C.; Qu, S.; Chen, X. An explainable artificial intelligence approach for financial distress prediction. Inf. Process. Manag. 2022, 59, 102988. [Google Scholar] [CrossRef]
- Hulsen, T. Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare. AI 2023, 4, 652–666. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Borrego-Díaz, J.; Galán Páez, J. Knowledge representation for explainable artificial intelligence: Modeling foundations from complex systems. Complex Intell. Syst. 2022, 8, 1579–1601. [Google Scholar] [CrossRef]
- Kikutsuji, T.; Mori, Y.; Okazaki, K.i.; Mori, T.; Kim, K.; Matubayasi, N. Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI). J. Chem. Phys. 2022, 156. [Google Scholar] [CrossRef]
- Homafar, A.; Nasiri, H.; Chelgani, S.C. Modeling coking coal indexes by SHAP-XGBoost: Explainable artificial intelligence method. Fuel Commun. 2022, 13, 100078. [Google Scholar] [CrossRef]
- Yin, J.; Ren, X.; Liu, R.; Tang, T.; Su, S. Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach. Reliab. Eng. Syst. Saf. 2022, 219, 108183. [Google Scholar] [CrossRef]
- Li, Y.F.; Huang, H.Z.; Mi, J.; Peng, W.; Han, X. Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability. Ann. Oper. Res. 2022, 311, 195–209. [Google Scholar] [CrossRef]
- Roca-Flores, E.; Naumis, G.G.; Madrigal-Solís, E.; Fraedrich, K. Typhoon complexity: Northwest Pacific tropical cyclone season complex systems analysis. Int. J. Mod. Phys. C 2023, 34, 2350045. [Google Scholar] [CrossRef]
- Duan, S.; Shi, Z. A longitudinal study of formulaic sequence use in second language writing: Complex dynamic systems perspective. Lang. Teach. Res. 2024, 28, 497–530. [Google Scholar] [CrossRef]
- Hunt, E.R.; Baddeley, R.J.; Worley, A.; Sendova-Franks, A.B.; Franks, N.R. Ants determine their next move at rest: Motor planning and causality in complex systems. R. Soc. Open Sci. 2016, 3, 150534. [Google Scholar] [CrossRef]
- Kim, J.M.; Li, C.; Ha, I.D. Generalised linear mixed logit and probit models applied to US Army and Navy data. Int. J. Product. Qual. Manag. 2020, 30, 126–142. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Barry, S.J.; Ferguson, H.M.; Müller, P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol. Evol. 2015, 6, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Nehaniv, C.L.; Dautenhahn, K. Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Nagel, K.; Schreckenberg, M. A cellular automaton model for freeway traffic. J. Phys. I 1992, 2, 2221–2229. [Google Scholar] [CrossRef]
- Faraway, J.J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hedeker, D. Generalized linear mixed models. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Goldstein, H.; Rasbash, J. Improved approximations for multilevel models with binary responses. J. R. Stat. Soc. Ser. A Stat. Soc. 1996, 159, 505–513. [Google Scholar] [CrossRef]
CCD | ICD | CWD | IWD | |
---|---|---|---|---|
(Intercept) | 186.55 * | *** | *** | |
KBT | *** | *** | *** | *** |
HM | *** | *** | *** | *** |
RD | *** | *** | *** | * |
DF | *** | *** | *** | *** |
AIC | 805,479.02 | 366,817.18 | 614,138.94 | 1,081,307.28 |
BIC | 805,560.03 | 366,898.20 | 614,219.96 | 1,081,388.30 |
Log Likelihood | −402,730.51 | −183,399.59 | −307,060.47 | −540,644.64 |
Num. obs. | 60,000 | 60,000 | 60,000 | 60,000 |
Num. groups: CCP | 5 | 5 | 5 | 5 |
Num. groups: Fear | 5 | 5 | 5 | 5 |
Num. groups: Desire | 5 | 5 | 5 | 5 |
Var: CCP (Intercept) | 82,155.53 | |||
Var: Fear (Intercept) | 34,862.53 | 762,263.23 | ||
Var: Desire (Intercept) | 793.90 | 43,757.86 | ||
Var: Residual | 39,550.80 | 3,925,780.43 |
CCD | ICD | CWD | IWD | |
---|---|---|---|---|
CCP | ||||
0.1 | −87.47 | 3.85 | 18.95 | 502.47 |
0.3 | 5.52 | 1.64 | −5.88 | −37.13 |
0.5 | 19.43 | −0.90 | −7.88 | −125.92 |
0.7 | 27.80 | −2.03 | −5.5 | −168.11 |
0.9 | 34.72 | −2.57 | 0.30 | −171.31 |
Fear | ||||
0 | 269.91 | 4.02 | −24.57 | −1277.81 |
0.25 | 61.11 | 1.42 | −16.87 | −380.34 |
0.5 | −7.86 | −0.30 | −4.95 | 222.16 |
0.75 | −88.89 | −1.64 | 19.64 | 409.88 |
1 | −234.27 | −3.50 | 26.75 | 1026.1047 |
Desire | ||||
0 | −45.17 | −5.73 | 12.56 | 337.32 |
0.25 | −8.76 | −1.31 | 3.36 | 52.98 |
0.5 | 11.05 | 0.65 | −2.45 | −66.47 |
0.75 | 20.09 | 2.43 | −5.70 | −150.04 |
1 | 22.80 | 3.96 | −7.76 | −173.79 |
Dependent Variable: | ||||
---|---|---|---|---|
CCD | ICD | CWD | IWD | |
KBT | 44.141 | 0.648 | 4.113 | 371.209 |
HM | 155.508 | 2.143 | 8.236 | 478.769 |
RD | 1.407 | 0.981 | 4.360 | 8.778 |
DF | 65.242 | 0.166 | 0.406 | 305.171 |
CCP | 30.548 | 1.607 | 6.706 | 168.445 |
Fear | 126.047 | 1.882 | 12.831 | 575.979 |
Desire | 16.993 | 2.422 | 5.080 | 127.779 |
Poisson | ||||
---|---|---|---|---|
CCD | ICD | CWD | IWD | |
(Intercept) | *** | *** | *** | *** |
KBT | *** | *** | *** | *** |
HM | *** | *** | *** | *** |
RD | *** | *** | *** | *** |
DF | *** | *** | *** | *** |
AIC | 8,574,896.31 | 393,983.95 | 1,181,136.66 | 45,225,415.52 |
BIC | 8,574,968.33 | 394,055.97 | 1,181,208.68 | 45,225,487.54 |
Log Likelihood | −4,287,440.16 | −196,983.97 | −590,560.33 | −22,612,699.76 |
Num. obs. | 60,000 | 60,000 | 60,000 | 60,000 |
Num. groups: CCP | 5 | 5 | 5 | 5 |
Num. groups: Fear | 5 | 5 | 5 | 5 |
Num. groups: Desire | 5 | 5 | 5 | 5 |
Var: CCP (Intercept) | ||||
Var: Fear (Intercept) | ||||
Var: Desire (Intercept) |
Gamma | |||
---|---|---|---|
CCD | CWD | IWD | |
(Intercept) | *** | *** | *** |
KBT | *** | *** | *** |
HM | *** | *** | *** |
RD | *** | *** | |
DF | *** | ** | *** |
AIC | 872,177.97 | 552,567.86 | 967,423.69 |
BIC | 872,258.99 | 552,648.87 | 967,504.71 |
Log Likelihood | −436,079.99 | −276,274.93 | −483,702.85 |
Num. obs. | 60,000 | 60,000 | 60,000 |
Num. groups: CCP | 5 | 5 | 5 |
Num. groups: Fear | 5 | 5 | 5 |
Num. groups: Desire | 5 | 5 | 5 |
Var: CCP (Intercept) | |||
Var: Fear (Intercept) | |||
Var: Desire (Intercept) |
Inverse Gaussian | |||
---|---|---|---|
CCD | CWD | IWD | |
(Intercept) | *** | *** | *** |
KBT | *** | *** | *** |
HM | *** | *** | *** |
RD | *** | *** | *** |
DF | *** | *** | |
AIC | 958,219.28 | 545,801.35 | 945,278.79 |
BIC | 958,300.30 | 545,882.37 | 945,359.81 |
Log Likelihood | −479,100.64 | −272,891.68 | −472,630.40 |
Num. obs. | 60,000 | 60,000 | 60,000 |
Num. groups: CCP | 5 | 5 | 5 |
Num. groups: Fear | 5 | 5 | 5 |
Num. groups: Desire | 5 | 5 | 5 |
Var: CCP (Intercept) | |||
Var: Fear (Intercept) | |||
Var: Desire (Intercept) |
Poisson | Gamma | Inverse Gaussian | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CCD | ICD | CWD | IWD | CCD | CWD | IWD | CCD | CWD | IWD | |
CCP | ||||||||||
0.1 | −0.13 | 0.38 | 0.27 | 0.23 | −0.07 | 0.18 | 0.26 | 0.70 | 0.11 | 0.19 |
0.3 | 0.01 | 0.20 | −0.08 | −0.01 | −0.00 | −0.08 | −0.03 | −0.08 | −0.08 | −0.08 |
0.5 | 0.03 | −0.07 | −0.12 | −0.06 | 0.01 | −0.09 | −0.06 | −0.51 | −0.09 | −0.10 |
0.7 | 0.04 | −0.22 | −0.08 | −0.08 | 0.02 | −0.05 | −0.08 | −0.70 | −0.05 | −0.11 |
0.9 | 0.05 | −0.29 | 0.01 | −0.08 | 0.05 | 0.03 | −0.09 | −0.76 | 0.02 | −0.12 |
Fear | ||||||||||
0 | 0.35 | 0.40 | −0.42 | −0.91 | 0.67 | −0.36 | −0.60 | 1.30 | −0.42 | −0.54 |
0.25 | 0.11 | 0.18 | −0.25 | −0.11 | 0.12 | −0.21 | −0.13 | −1.03 | −0.27 | −0.22 |
0.5 | 0.02 | 0.01 | −0.03 | 0.21 | −0.02 | −0.02 | 0.08 | −1.34 | −0.08 | −0.06 |
0.75 | −0.11 | −0.16 | 0.31 | 0.29 | −0.16 | 0.26 | 0.21 | −1.57 | 0.19 | 0.07 |
1 | −0.37 | −0.44 | 0.39 | 0.52 | −0.61 | 0.33 | 0.44 | −2.68 | 0.27 | 0.30 |
Desire | ||||||||||
0 | −0.07 | −0.88 | 0.18 | 0.16 | −0.08 | 0.17 | 0.10 | −0.11 | 0.15 | 0.05 |
0.25 | −0.01 | −0.06 | 0.06 | 0.03 | −0.02 | 0.05 | 0.01 | −0.03 | 0.02 | −0.01 |
0.5 | 0.02 | 0.16 | −0.03 | −0.03 | 0.02 | −0.03 | −0.02 | 0.03 | −0.06 | −0.03 |
0.75 | 0.03 | 0.33 | −0.09 | −0.07 | 0.04 | −0.08 | −0.04 | 0.03 | −0.11 | −0.04 |
1 | 0.03 | 0.45 | −0.12 | −0.09 | 0.05 | −0.11 | −0.05 | 0.01 | −0.13 | −0.04 |
Poisson | Gamma | Inverse Gaussian | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CCD | ICD | CWD | IWD | CCD | CWD | IWD | CCD | CWD | IWD | |
KBT | 0.06 | 0.07 | 0.06 | 0.19 | 0.10 | 0.05 | 0.14 | 0.32 | 0.03 | 0.10 |
HM | 0.23 | 0.25 | 0.13 | 0.26 | 0.31 | 0.09 | 0.18 | 0.86 | 0.05 | 0.13 |
RD | 0.00 | 0.11 | 0.07 | 0.00 | 0.00 | 0.08 | 0.00 | 0.09 | 0.09 | 0.00 |
DF | 0.09 | 0.02 | 0.01 | 0.16 | 0.18 | 0.00 | 0.13 | 0.54 | 0.00 | 0.12 |
CCP | 0.04 | 0.17 | 0.10 | 0.08 | 0.03 | 0.07 | 0.09 | 0.36 | 0.05 | 0.08 |
Fear | 0.18 | 0.21 | 0.20 | 0.36 | 0.32 | 0.17 | 0.26 | 1.00 | 0.17 | 0.21 |
Desire | 0.02 | 0.33 | 0.08 | 0.06 | 0.03 | 0.07 | 0.04 | 0.03 | 0.07 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Gan, C.; Lawniczak, A.T. Analyzing Decision-Making in Cognitive Agent Simulations Using Generalized Linear Mixed-Effects Models. Mathematics 2024, 12, 3768. https://doi.org/10.3390/math12233768
Xie S, Gan C, Lawniczak AT. Analyzing Decision-Making in Cognitive Agent Simulations Using Generalized Linear Mixed-Effects Models. Mathematics. 2024; 12(23):3768. https://doi.org/10.3390/math12233768
Chicago/Turabian StyleXie, Shengkun, Chong Gan, and Anna T. Lawniczak. 2024. "Analyzing Decision-Making in Cognitive Agent Simulations Using Generalized Linear Mixed-Effects Models" Mathematics 12, no. 23: 3768. https://doi.org/10.3390/math12233768
APA StyleXie, S., Gan, C., & Lawniczak, A. T. (2024). Analyzing Decision-Making in Cognitive Agent Simulations Using Generalized Linear Mixed-Effects Models. Mathematics, 12(23), 3768. https://doi.org/10.3390/math12233768