An Energy-Efficient Unrelated Parallel Machine Scheduling Problem with Batch Processing and Time-of-Use Electricity Prices
Abstract
:1. Introduction
2. Literature Review
2.1. Unrelated Parallel Batch Processing Machine Scheduling
2.2. Batch Scheduling under TOU Electricity Tariffs
3. Problem Description and Model
3.1. Problem Description
- There are n jobs to be processed on m unrelated parallel BPMs. The processing time of a job depends on the machine processing it, and let denote the processing time of job j on machine i. All jobs have unit sizes, and the maximum capacity of the machines is B (i.e., a machine can process up to B jobs at a time). The power of machine i is denoted by .
- Once a batch starts to be processed on a machine, it cannot be terminated, and no jobs can be added to the machine until processing is finished. The processing time of a batch on a machine is determined by the longest processing time of the jobs in the batch for the machine.
- TOU electricity tariffs are used in this paper (i.e., the electricity price of each period is not the same). An allowable scheduling horizon T is considered, which consists of K periods. The duration and electricity price of period k are denoted by and , respectively. The scheduling problem is to group the jobs into batches, assign the batches to the machines and allocate time to the batches on each machine in order to minimize the total electricity cost within the scheduling horizon.
3.2. Mathematical Model
4. Heuristic Algorithms
4.1. The First Group of Heuristics
- Let , and denote the longest, average and shortest processing time of job j on all machines, respectively. The jobs are arranged in non-increasing order of in FBLPT_max, in FBLPT_avg and in FBLPT_min.
- According to the order of the jobs obtained in Step 1, every B jobs are grouped into a batch starting from the first job. Note that the last batch may contain less than B jobs. Finally a list of batches is created.
- Select the batch at the head of the batch list.
- Calculate the completion times of the batches for each machine and assign them to the machines that enable them to have the shortest completion time. Repeat Step 1 until all batches have been assigned to a machine.
- Select the batch at the head of the batch list.
- Preemptive processing is considered. Calculate the lowest electricity cost of the batch for each machine. Assign the batch to the machine for which the electricity cost of the batch is the lowest. Remove the periods occupied by the batch. Repeat Step 1 until all batches have been assigned to a machine.
4.2. The Second Group of Heuristics
- Arrange the jobs in some arbitrary order.
- Select the job at the head of the list and assign it to the machine with the shortest processing time. Repeat this step until all jobs are assigned to machines.
- Calculate the power consumption of job j for each machine i, and let denote the difference between the two smallest values and . Arrange the jobs in non-increasing order of .
- Preemptive processing is considered. Select the job at the head of the list, and calculate the lowest electricity cost of the job on each machine. Assign the job to the machine for which the electricity cost of the job is the lowest. Remove the periods occupied by the job. Repeat this step until all jobs have been assigned to machines.
- Preemptive processing is considered. Calculate the lowest electricity cost of job j for each machine i, and let denote the difference between the two smallest values and . Select the job with the largest value.
- Assign the job to the periods for the machine with the lowest electricity cost. Remove the job and the occupied time for this machine. Return to Step 1 until all jobs are assigned to machines.
5. Computational Experiments
5.1. Data Generation
5.2. Comparison between the MILP Model and the Heuristics
5.3. Comparison of the Heuristics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mathirajan, M.; Sivakumar, A.I. A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor. Int. J. Adv. Manuf. Technol. 2006, 29, 990–1001. [Google Scholar] [CrossRef]
- Tang, L.; Yue, Z.; Liu, J. An Improved Differential Evolution Algorithm for Practical Dynamic Scheduling in Steelmaking-Continuous Casting Production. IEEE Trans. Evol. Comput. 2014, 18, 209–225. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Chu, F.; Chu, C. Bi-objective optimization of a single machine batch scheduling problem with energy cost consideration. J. Clean. Prod. 2016, 137, 1205–1215. [Google Scholar] [CrossRef]
- Wei, Q.; Kang, L.; Shan, E. Batching Scheduling in a Two-Level Supply Chain with Earliness and Tardiness Penalties. J. Syst. Sci. Complex. 2016, 29, 478–498. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, S.; Chen, H.; Xu, R. Pseudo transformation mechanism between resource allocation and bin-packing in batching environments. Future Gener. Comput. Syst. 2019, 95, 79–88. [Google Scholar] [CrossRef]
- Fowler, J.W.; Mönch, L. A survey of scheduling with parallel batch (p-batch) processing. Eur. J. Oper. Res. 2022, 298, 1–24. [Google Scholar] [CrossRef]
- Zhou, S.; Li, X.; Du, N.; Pang, Y.; Chen, H. A multi-objective differential evolution algorithm for parallel batch processing machine scheduling considering electricity consumption cost. Comput. Oper. Res. 2018, 96, 55–68. [Google Scholar] [CrossRef]
- Saberi-Aliabad, H.; Reisi-Nafchi, M.; Moslehi, G. Energy-efficient scheduling in an unrelated parallel-machine environment under time-of-use electricity tariffs. J. Clean. Prod. 2019, 249, 119393. [Google Scholar] [CrossRef]
- Lu, S.; Liu, X.; Pei, J.; Thai, M.T.; Pardalos, P.M. A hybrid ABC-TS algorithm for the unrelated parallel-batching machines scheduling problem with deteriorating jobs and maintenance activity. Appl. Soft Comput. 2018, 66, 168–182. [Google Scholar] [CrossRef]
- Kong, M.; Liu, X.; Pei, J.; Pardalos, P.M.; Mladenovic, N. Parallel-batching scheduling with nonlinear processing times on a single and unrelated parallel machines. J. Glob. Optim. 2020, 78, 693–715. [Google Scholar] [CrossRef]
- Li, X.L.; Huang, Y.L.; Tan, Q.; Chen, H.P. Scheduling unrelated parallel batch processing machines with non-identical job sizes. Comput. Oper. Res. 2013, 40, 2983–2990. [Google Scholar] [CrossRef]
- Klemmt, A.; Weigert, G.; Almeder, C.; Monch, L. A comparison of MIP-based decomposition techniques and VNS approaches for batch scheduling problems. In Proceedings of the 2009 Winter Simulation Conference (WSC), Austin, TX, USA, 13–16 December 2009. [Google Scholar]
- Shahvari, O.; Logendran, R. An Enhanced tabu search algorithm to minimize a bi-criteria objective in batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes. Comput. Oper. Res. 2017, 77, 154–176. [Google Scholar] [CrossRef]
- Arroyo, J.; Leung, Y.T. Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal ready times. Comput. Oper. Res. 2017, 78, 117–128. [Google Scholar] [CrossRef]
- Arroyo, J.E.C.; Leung, Y.T. An effective iterated greedy algorithm for scheduling unrelated parallel batch machines with non-identical capacities and unequal ready times. Comput. Ind. Eng. 2017, 105, 84–100. [Google Scholar] [CrossRef]
- Zhou, S.; Xie, J.; Du, N.; Pang, Y. A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines with different capacities and arbitrary job sizes. Appl. Math. Comput. 2018, 334, 254–268. [Google Scholar] [CrossRef]
- Arroyo, J.E.C.; Leung, Y.T.; Tavares, R.G. An iterated greedy algorithm for total flow time minimization in unrelated parallel batch machines with unequal job release times. Eng. Appl. Artif. Intell. 2019, 77, 239–254. [Google Scholar] [CrossRef]
- Shahvari, O.; Logendran, R. A bi-objective batch processing problem with dual-resources on unrelated-parallel machines. Appl. Soft Comput. 2017, 61, 174–192. [Google Scholar] [CrossRef]
- Shahidi-Zadeh, B.; Tavakkoli-Moghaddam, R.; Taheri-Moghadam, A.; Rastgar, I. Solving a bi-objective unrelated parallel batch processing machines scheduling problem: A comparison study. Comput. Oper. Res. 2017, 88, 71–90. [Google Scholar] [CrossRef]
- Zarook, Y.; Rezaeian, J.; Mahdavi, I.; Yaghini, M. Efficient algorithms to minimize makespan of the unrelated parallel batch-processing machines scheduling problem with unequal job ready times. Rairo-Oper. Res. 2021, 55, 1501–1522. [Google Scholar] [CrossRef]
- Zhang, S.; Che, A.; Wu, X.; Chu, C. Improved mixed-integer linear programming model and heuristics for bi-objective single-machine batch scheduling with energy cost consideration. Eng. Optim. 2018, 50, 1380–1394. [Google Scholar] [CrossRef]
- Cheng, J.; Chu, F.; Liu, M.; Wu, P.; Xia, W. Bi-criteria single-machine batch scheduling with machine on/off switching under time-of-use tariffs. Comput. Ind. Eng. 2017, 112, 721–734. [Google Scholar] [CrossRef]
- Cheng, J.; Chu, F.; Liu, M.; Xia, W. Single-machine batch scheduling under time-of-use tariffs: New mixed-integer programming approaches. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 3498–3503. [Google Scholar] [CrossRef]
- Wu, P.; Cheng, J.; Chu, F. Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics. Ann. Oper. Res. 2021, 296, 471–484. [Google Scholar] [CrossRef]
- Zhou, S.; Jin, M.; Du, N. Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times. Energy 2020, 209, 118420. [Google Scholar] [CrossRef]
- Liu, M.; Yang, X.; Chu, F.; Zhang, J.; Chu, C. Energy-oriented bi-objective optimization for the tempered glass scheduling. Omega 2018, 90, 101995. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, S.; Xu, R.; Chen, H. Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm. Int. J. Prod. Res. 2019, 12, 1–18. [Google Scholar] [CrossRef]
- Qian, S.Y.; Jia, Z.H.; Li, K. A multi-objective evolutionary algorithm based on adaptive clustering for energy-aware batch scheduling problem. Future Gener. Comput. Syst. 2020, 113, 441–453. [Google Scholar] [CrossRef]
- Lee, C.Y. Minimizing makespan on a single batch processing machine with dynamic job arrivals. Int. J. Prod. Res. 1999, 37, 219–236. [Google Scholar] [CrossRef]
Job j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 7 | 1 | 4 | 1 | 7 | 9 | 7 | 3 | |
8 | 3 | 5 | 8 | 2 | 8 | 7 | 1 | 6 | 2 | |
8 | 3 | 7 | 8 | 4 | 8 | 7 | 9 | 7 | 3 |
Batch | B1 | B2 | B3 | B4 | B5 |
---|---|---|---|---|---|
Job | 1,8 | 4,6 | 3,7 | 5,9 | 2,10 |
9 | 1 | 7 | 7 | 3 | |
8 | 8 | 7 | 6 | 3 |
Periods | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Duration | 7 | 3 | 5 | 3 | 3 | 2 | 8 | 3 | 5 | 1 |
Price | 0.4 | 0.8 | 1.3 | 0.8 | 1.3 | 0.8 | 0.4 | 0.8 | 1.3 | 0.8 |
Heuristics | SPT | MDPC | MDEC |
---|---|---|---|
Machine 1 | 1,2,4,6,7 | 1,2,4,6,9 | 1,2,4,6,7 |
Machine 2 | 3,5,8,9,10 | 3,5,7,8,10 | 3,5,8,9,10 |
Period Type | Electricity Price | Time Periods |
---|---|---|
On-peak | 1.3 CNY/kWh | 10:00 a.m.–3:00 p.m. |
6:00 p.m.–9:00 p.m. | ||
Mid-peak | 0.8 CNY/kWh | 7:00 a.m.–10:00 a.m. |
3:00 p.m.–6:00 p.m. | ||
9:00 p.m.–11:00 p.m. | ||
Off-peak | 0.4 CNY/kWh | 11:00 p.m.–7:00 a.m. |
n | No. | MILP | SPT | MDPC | MDEC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FBLPT | ||||||||||||||
P1 | ||||||||||||||
TEC | Time (s) | Gap (%) | TEC | Time (s) | TEC | Time (s) | TEC | Time (s) | ||||||
20 | 1 | 28.4 | 53 | 412.16 | 0.00 | 29.6 | 54 | 0.04 | 29.2 | 53 | 0.03 | 29.2 | 53 | 0.03 |
2 | 29.6 | 53 | 79.75 | 0.00 | 31.2 | 54 | 0.03 | 34.0 | 56 | 0.03 | 32.0 | 53 | 0.03 | |
3 | 25.6 | 55 | 123.28 | 0.00 | 28.8 | 56 | 0.03 | 31.2 | 56 | 0.03 | 28.0 | 57 | 0.03 | |
4 | 33.2 | 54 | 175.43 | 0.00 | 40.0 | 57 | 0.04 | 44.8 | 57 | 0.03 | 40.8 | 57 | 0.03 | |
5 | 25.2 | 54 | 174.88 | 0.00 | 28.0 | 57 | 0.03 | 34.4 | 57 | 0.03 | 32.4 | 57 | 0.03 | |
50 | 1 | 66.4 | 151 | 3600.06 | 50.00 | 70.0 | 170 | 0.20 | 74.0 | 170 | 0.20 | 67.2 | 170 | 0.20 |
2 | 72.0 | 153 | 3600.06 | 77.79 | 78.8 | 170 | 0.23 | 80.8 | 168 | 0.20 | 74.4 | 170 | 0.21 | |
3 | 72.4 | 151 | 3600.01 | 76.20 | 74.4 | 147 | 0.20 | 79.6 | 170 | 0.20 | 75.6 | 147 | 0.21 | |
4 | - | - | - | - | 66.0 | 170 | 0.22 | 72.0 | 170 | 0.22 | 63.2 | 170 | 0.21 | |
5 | 70.0 | 168 | 3600.07 | 78.29 | 73.2 | 170 | 0.20 | 74.4 | 170 | 0.19 | 71.6 | 170 | 0.21 | |
100 | 1 | 286.8 | 340 | 3600.19 | 97.77 | 148.4 | 340 | 1.68 | 156.8 | 338 | 1.74 | 145.6 | 340 | 1.58 |
2 | - | - | - | - | 144.0 | 338 | 1.52 | 152.8 | 317 | 1.56 | 140.8 | 340 | 1.51 | |
3 | - | - | - | - | 138.0 | 339 | 1.53 | 146.4 | 339 | 1.75 | 136.4 | 338 | 1.58 | |
4 | - | - | - | - | 130.0 | 340 | 1.47 | 141.6 | 338 | 1.75 | 128.4 | 339 | 1.57 | |
5 | - | - | - | - | 114.8 | 339 | 1.42 | 127.6 | 340 | 1.65 | 116.0 | 339 | 1.47 |
n | No. | MILP | SPT | MDPC | MDEC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FBLPT | ||||||||||||||
P1 | ||||||||||||||
TEC | Time (s) | Gap (%) | TEC | Time (s) | TEC | Time (s) | TEC | Time (s) | ||||||
20 | 1 | 28.0 | 53 | 160.52 | 0.00 | 30.0 | 30 | 0.04 | 33.2 | 31 | 0.05 | 33.2 | 31 | 0.04 |
2 | 26.8 | 55 | 256.05 | 0.00 | 32.0 | 56 | 0.03 | 32.0 | 57 | 0.05 | 34.4 | 56 | 0.04 | |
3 | 24.4 | 55 | 184.98 | 0.00 | 28.8 | 56 | 0.04 | 30.0 | 56 | 0.04 | 30.0 | 56 | 0.04 | |
4 | 25.6 | 49 | 156.01 | 0.00 | 32.8 | 56 | 0.03 | 29.6 | 57 | 0.04 | 32.8 | 57 | 0.04 | |
5 | 29.6 | 57 | 235.00 | 0.00 | 35.6 | 56 | 0.05 | 40.4 | 56 | 0.05 | 32.8 | 56 | 0.04 | |
50 | 1 | 60.4 | 168 | 3600.03 | 66.91 | 64.0 | 170 | 0.23 | 63.2 | 170 | 0.20 | 65.2 | 170 | 0.24 |
2 | 54.0 | 149 | 3600.06 | 59.11 | 55.6 | 170 | 0.23 | 61.6 | 55 | 0.21 | 58.0 | 55 | 0.25 | |
3 | 49.2 | 168 | 3600.04 | 69.69 | 54.8 | 55 | 0.21 | 52.4 | 169 | 0.21 | 51.6 | 169 | 0.21 | |
4 | 60.0 | 169 | 3600.06 | 72.02 | 68.4 | 79 | 0.24 | 68.8 | 152 | 0.24 | 65.6 | 170 | 0.23 | |
5 | 63.2 | 147 | 3600.05 | 66.99 | 65.2 | 170 | 0.21 | 74.0 | 170 | 0.23 | 70.8 | 170 | 0.22 | |
100 | 1 | - | - | - | - | 101.2 | 340 | 1.46 | 102.0 | 340 | 1.44 | 102.0 | 340 | 2.28 |
2 | 339.5 | 340 | 3602.11 | 98.00 | 93.2 | 340 | 1.55 | 95.6 | 339 | 1.54 | 93.2 | 340 | 2.12 | |
3 | - | - | - | - | 111.6 | 340 | 1.52 | 113.6 | 340 | 1.70 | 112.4 | 336 | 2.37 | |
4 | - | - | - | - | 108.0 | 340 | 1.62 | 110.0 | 339 | 1.39 | 108.8 | 340 | 2.06 | |
5 | - | - | - | - | 102.0 | 340 | 1.47 | 104.0 | 340 | 1.37 | 105.6 | 339 | 2.29 |
m | n | FBLPT_max | FBLPT_avg | FBLPT_min | SPT | MDPC | MDEC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCT | MEC | SCT | MEC | SCT | MEC | FBLPT | |||||||||||||
P1 | P1 | P1 | P1 | ||||||||||||||||
TEC | TEC | TEC | TEC | TEC | TEC | TEC | TEC | TEC | |||||||||||
2 | 20 | 46.5 | 56.2 | 43.6 | 56.2 | 44.7 | 56.4 | 39.8 | 57.1 | 44.4 | 56.7 | 39.4 | 56.6 | 29.5 | 54.5 | 32.1 | 53.1 | 30.4 | 54.4 |
50 | 122.8 | 166.4 | 119.4 | 168.0 | 121.9 | 169.6 | 118.4 | 169.8 | 117.0 | 167.9 | 108.9 | 169.7 | 72.2 | 165.9 | 76.7 | 166.2 | 70.6 | 165.9 | |
100 | 247.8 | 339.9 | 240.1 | 339.9 | 248.4 | 339.6 | 232.0 | 339.9 | 234.3 | 339.7 | 221.8 | 340.0 | 136.2 | 337.8 | 337.0 | 329.8 | 137.0 | 339.6 | |
200 | 482.7 | 655.1 | 472.1 | 656.1 | 469.4 | 655.1 | 442.4 | 656.1 | 437.2 | 655.4 | 403.7 | 657.0 | 260.2 | 654.3 | 275.6 | 652.7 | 260.0 | 652.6 | |
300 | 728.8 | 992.0 | 696.5 | 992.0 | 700.0 | 991.1 | 664.3 | 991.8 | 667.2 | 991.4 | 635.7 | 992.4 | 387.6 | 990.6 | 415.0 | 989.4 | 378.8 | 987.3 | |
3 | 20 | 55.0 | 55.6 | 51.0 | 56.5 | 51.4 | 55.1 | 47.8 | 57.5 | 53.7 | 56.4 | 44.8 | 56.9 | 30.0 | 45.8 | 31.3 | 46.4 | 31.1 | 48.5 |
50 | 137.5 | 157.7 | 120.6 | 166.4 | 125.4 | 161.1 | 109.7 | 168.0 | 129.1 | 162.5 | 111.3 | 166.2 | 63.8 | 140.2 | 66.2 | 154.7 | 65.3 | 152.8 | |
100 | 262.2 | 339.6 | 225.6 | 339.6 | 242.1 | 339.5 | 199.3 | 339.8 | 230.4 | 339.6 | 193.8 | 339.8 | 107.0 | 339.3 | 108.6 | 339.4 | 107.6 | 339.1 | |
200 | 526.2 | 655.6 | 448.6 | 655.4 | 489.4 | 650.6 | 400.9 | 655.8 | 476.7 | 655.3 | 397.8 | 655.2 | 222.4 | 652.7 | 225.2 | 627.6 | 224.9 | 652.3 | |
300 | 796.9 | 991.6 | 690.2 | 991.3 | 739.4 | 991.4 | 611.0 | 991.6 | 715.0 | 991.2 | 608.0 | 991.7 | 334.2 | 990.4 | 338.3 | 990.2 | 337.7 | 989.5 |
m | n | FBLPT_max | FBLPT_avg | FBLPT_min | SPT | MDPC | MDEC | |||
---|---|---|---|---|---|---|---|---|---|---|
SCT | MEC | SCT | MEC | SCT | MEC | FBLPT | ||||
P1 | P1 | P1 | P1 | |||||||
2 | 20 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
50 | 0.5 | 1.6 | 0.4 | 0.6 | 0.3 | 0.7 | 0.2 | 0.2 | 0.2 | |
100 | 4.5 | 20.3 | 82.9 | 40.1 | 2.64 | 13.6 | 1.6 | 1.7 | 1.6 | |
200 | 307.6 | 319.4 | 244.0 | 177.0 | 84.9 | 376.4 | 17.1 | 17.9 | 17.1 | |
300 | 659.6 | 437.9 | 265.3 | 556.1 | 183.3 | 572.1 | 77.4 | 94.0 | 89.1 | |
3 | 20 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 |
50 | 0.3 | 0.3 | 0.4 | 11.7 | 0.4 | 0.6 | 0.2 | 0.2 | 0.2 | |
100 | 1.6 | 61.9 | 1.6 | 18.4 | 1.7 | 67.02 | 1.5 | 1.5 | 2.2 | |
200 | 18.2 | 139.6 | 16.1 | 190.4 | 18.5 | 370.9 | 15.1 | 15.0 | 15.2 | |
300 | 86.0 | 256.7 | 77.7 | 388.6 | 84.0 | 504.6 | 64.0 | 52.2 | 52.3 |
n | SPT | MDPC | MDEC | ||||||
---|---|---|---|---|---|---|---|---|---|
FBLPT | |||||||||
P1 | |||||||||
TEC | Cmax | Time (s) | TEC | Cmax | Time (s) | TEC | Cmax | Time (s) | |
20 | 22.8 | 11.7 | 0.05 | 25.1 | 22.0 | 0.04 | 24.5 | 22.0 | 0.04 |
50 | 45.5 | 35.0 | 0.23 | 47.2 | 105.5 | 0.22 | 47.5 | 80.3 | 0.28 |
100 | 73.2 | 54.5 | 1.40 | 74.4 | 207.5 | 1.41 | 74.8 | 207.4 | 1.58 |
200 | 155.2 | 446.0 | 14.35 | 158.1 | 520.4 | 18.86 | 155.0 | 496.7 | 18.71 |
300 | 218.0 | 804.1 | 76.49 | 219.6 | 989.1 | 77.93 | 219.6 | 987.6 | 80.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Chen, G.; Zhou, S.; Zhou, X.; Jin, M. An Energy-Efficient Unrelated Parallel Machine Scheduling Problem with Batch Processing and Time-of-Use Electricity Prices. Mathematics 2024, 12, 376. https://doi.org/10.3390/math12030376
Feng L, Chen G, Zhou S, Zhou X, Jin M. An Energy-Efficient Unrelated Parallel Machine Scheduling Problem with Batch Processing and Time-of-Use Electricity Prices. Mathematics. 2024; 12(3):376. https://doi.org/10.3390/math12030376
Chicago/Turabian StyleFeng, Liman, Guo Chen, Shengchao Zhou, Xiaojun Zhou, and Mingzhou Jin. 2024. "An Energy-Efficient Unrelated Parallel Machine Scheduling Problem with Batch Processing and Time-of-Use Electricity Prices" Mathematics 12, no. 3: 376. https://doi.org/10.3390/math12030376
APA StyleFeng, L., Chen, G., Zhou, S., Zhou, X., & Jin, M. (2024). An Energy-Efficient Unrelated Parallel Machine Scheduling Problem with Batch Processing and Time-of-Use Electricity Prices. Mathematics, 12(3), 376. https://doi.org/10.3390/math12030376