Two Preconditioners for Time-Harmonic Eddy-Current Optimal Control Problems
Abstract
:1. Introduction
2. Eddy Current Problem
3. The Preconditioners
Algorithm 1 Computation of of system (11) |
|
Algorithm 2 Computation of from with , |
|
Algorithm 3 Computation of from with , : |
|
4. Block-Triangular Preconditioner
Algorithm 4 Computing the solution x of with and |
|
5. Structured Preconditioner
Algorithm 5 Computing the solution x of with and |
|
6. Numerical Experiments
- With the increase in mesh refinement degree and matrix dimension, preconditioners and reduce the iteration steps and shorten the iteration time compared with preconditioner and the EI-GMRES algorithm.
- The algorithm is robust. Preconditioners and still have better numerical performance as parameters and change.
- As parameter decreases and tends to zero, the iteration time of preconditioners and also decreases. It shows that the assumption that tends to zero is reasonable.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tröltzsch, F. Optimal Control of Partial Differential Equations: Theory, Methods, and Applications; American Mathematical Society: Providence, RI, USA, 2010; Volume 112. [Google Scholar]
- Kolmbauer, M. The Multiharmonic Finite Element and Boundary Element Method for Simulation and Control of Eddy Current Problems. Ph.D. Thesis, Johannes Kepler University, Linz, Austria, 2012. [Google Scholar]
- Lions, J.-L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: Berlin, Germany, 1971. [Google Scholar]
- Ida, N. Numerical Modeling for Electromagnetic Non-Destructive Evaluation; Engineering NDE; Chapman & Halls: London, UK, 1995. [Google Scholar]
- Golub, G.H.; Wu, X.; Yuan, J.-Y. SOR-like methods for augmented systems. Bit Numer. Math. 2001, 41, 71–85. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Golub, G.H.; Ng, M.K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 2003, 24, 603–626. [Google Scholar] [CrossRef]
- Benzi, M.; Golub, G.H. An iterative method for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 2002, 1–28. [Google Scholar]
- Benzi, M. A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J. Matrix Anal. Appl. 2009, 31, 360–374. [Google Scholar] [CrossRef]
- Jiang, M.-Q.; Cao, Y. On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems. J. Comput. Appl. Math. 2009, 231, 973–982. [Google Scholar] [CrossRef]
- Yang, A.-L.; An, J.; Wu, Y.-J. A generalized preconditioned HSS method for non-Hermitian positive definite linear systems. Appl. Math. Comput. 2010, 216, 1715–1722. [Google Scholar] [CrossRef]
- Bai, Z.-Z. Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models. Numer. Linear Algebra Appl. 2012, 19, 914–936. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, G.-F.; Zhu, M.-Z. A block alternating splitting iteration method for a class of block two-by-two complex linear systems. J. Comput. Appl. Math. 2015, 288, 203–214. [Google Scholar] [CrossRef]
- Krendl, W.; Simoncini, V.; Zulehner, W. Stability estimates and structural spectral properties of saddle point problems. Numer. Math. 2013, 124, 183–213. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, G.-F.; Zhu, M.-Z. A note on preconditioners for complex linear systems arising from PDE-constrained optimization problems. Appl. Math. Lett. 2016, 61, 114–121. [Google Scholar] [CrossRef]
- Liang, Z.-Z.; Axelsson, O.; Neytcheva, M. A robust structured preconditioner for time-harmonic parabolic optimal control problems. Numer. Algorithms 2018, 79, 575–596. [Google Scholar] [CrossRef]
- Liang, Z.-Z.; Axelsson, O. Exact inverse solution techniques for a class of complex valued block two-by-two linear systems. Numer. Algorithms 2022, 90, 79–98. [Google Scholar] [CrossRef]
- Buffa, A.; Ammari, H.; Nédélec, J.-C. A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 2000, 60, 1805–1823. [Google Scholar] [CrossRef]
- Schmidt, K.; Sterz, O.; Hiptmair, R. Estimating the eddy-current modeling error. IEEE Trans. Magn. 2008, 44, 686–689. [Google Scholar] [CrossRef]
- Axelsson, O.; Lukáš, D. Preconditioning methods for eddy-current optimally controlled time-harmonic electromagnetic problems. J. Numer. Math. 2019, 27, 1–21. [Google Scholar] [CrossRef]
- Zaglmayr, S. High Order Finite Element Methods for Electromagnetic Field Computation. PhD Thesis, Universität Linz, Linz, Austria, 2006. [Google Scholar]
- Nédélec, J.-C. Mixed finite elements in R3. Numer. Math. 1980, 35, 315–341. [Google Scholar] [CrossRef]
- Nédélec, J.-C. A new family of mixed finite elements in R3. Numer. Math. 1986, 50, 57–81. [Google Scholar] [CrossRef]
- Paige, C.C.; Saunders, M.A. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 1975, 12, 617–629. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Axelsson, O.; Liang, Z.-Z. A note on preconditioning methods for time-periodic eddy current optimal control problems. J. Comput. Appl. Math. 2019, 352, 262–277. [Google Scholar] [CrossRef]
- Pearson, J.W.; Wathen, A.J. A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 2012, 19, 816–829. [Google Scholar] [CrossRef]
- Choi, Y.; Farhat, C.; Murray, W.; Saunders, M. A practical factorization of a Schur complement for PDE-constrained distributed optimal control. J. Sci. Comput. 2015, 65, 576–597. [Google Scholar] [CrossRef]
- Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409–436. [Google Scholar] [CrossRef]
- Rahman, T.; Valdman, J. Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements. Appl. Math. Comput. 2013, 219, 7151–7158. [Google Scholar] [CrossRef]
- Luo, W.-H.; Gu, X.-M.; Carpentieri, B. A dimension expanded preconditioning technique for saddle point problems. BIT Numer. Math. 2022, 62, 1983–2004. [Google Scholar] [CrossRef]
- Luo, W.-H.; Carpentieri, B.; Guo, J. A dimension expanded preconditioning technique for block two-by-two linear equations. Demonstr. Math. 2023, 56, 20230260. [Google Scholar] [CrossRef]
- Gu, X. Efficient preconditioned iterative linear solvers for 3-D magnetostatic problems using edge elements. Adv. Appl. Math. Mech. 2020, 12, 301–318. [Google Scholar] [CrossRef]
Abbreviation | Description |
---|---|
MINRES with a block-diagonal preconditioner (13) | |
EI-GMRES | GMRES with the exact Schur complement (18) |
GMRES with a block-triangular preconditioner (27) | |
GMRES with a structured preconditioner (28) |
Level | Size of and |
---|---|
1 | 1854 |
2 | 13,428 |
3 | 102,024 |
Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IT | CPU | IT | CPU | IT | CPU | IT | CPU | IT | CPU | ||
14 | 0.4314 | 14 | 0.3827 | 14 | 0.3755 | 16 | 0.4547 | 16 | 0.4343 | ||
14 | 0.3775 | 14 | 0.3883 | 15 | 0.3949 | 16 | 0.4670 | 18 | 0.4868 | ||
13 | 0.4047 | 14 | 0.4034 | 14 | 0.3722 | 14 | 0.4268 | 13 | 0.3587 | ||
11 | 0.3078 | 11 | 0.3022 | 11 | 0.3339 | 11 | 0.3017 | 11 | 0.3040 | ||
EI-GMRES | 36 | 0.3453 | 37 | 0.3453 | 38 | 0.3527 | 47 | 0.3612 | 285 | 1.3114 | |
207 | 0.9442 | 208 | 0.9415 | 215 | 0.9721 | 229 | 1.0480 | 303 | 1.3246 | ||
74 | 0.2320 | 75 | 0.2450 | 76 | 0.2413 | 79 | 0.2496 | 93 | 0.2838 | ||
12 | 0.0692 | 12 | 0.0642 | 13 | 0.0670 | 14 | 0.0738 | 15 | 0.0739 | ||
10 | 0.5884 | 10 | 0.5507 | 11 | 0.6189 | 13 | 0.5595 | 12 | 0.3076 | ||
10 | 0.2818 | 11 | 0.3153 | 11 | 0.2926 | 12 | 0.2941 | 14 | 0.3090 | ||
8 | 0.1839 | 8 | 0.1803 | 9 | 0.1877 | 9 | 0.1925 | 11 | 0.2012 | ||
5 | 0.1467 | 5 | 0.1473 | 6 | 0.1575 | 6 | 0.1390 | 7 | 0.1590 | ||
8 | 0.4493 | 8 | 0.4496 | 8 | 0.4419 | 11 | 0.4304 | 11 | 0.2405 | ||
9 | 0.2037 | 9 | 0.2275 | 9 | 0.2327 | 10 | 0.2191 | 12 | 0.2096 | ||
10 | 0.1563 | 10 | 0.1533 | 11 | 0.1583 | 11 | 0.1689 | 11 | 0.1649 | ||
7 | 0.1453 | 8 | 0.1354 | 9 | 0.1481 | 9 | 0.1441 | 9 | 0.1542 |
Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IT | CPU | IT | CPU | IT | CPU | IT | CPU | IT | CPU | ||
14 | 0.3497 | 14 | 0.4169 | 14 | 0.3526 | 16 | 0.3951 | 16 | 0.3993 | ||
14 | 0.3560 | 14 | 0.3509 | 15 | 0.3880 | 16 | 0.3947 | 18 | 0.4448 | ||
13 | 0.3915 | 14 | 0.3526 | 14 | 0.3522 | 14 | 0.3506 | 13 | 0.3291 | ||
11 | 0.3318 | 11 | 0.2839 | 11 | 0.2800 | 11 | 0.2799 | 11 | 0.2781 | ||
EI-GMRES | 36 | 0.3523 | 37 | 0.3576 | 38 | 0.3654 | 47 | 0.3840 | 286 | 1.3653 | |
207 | 0.9619 | 208 | 0.9742 | 215 | 0.9972 | 229 | 1.1027 | 303 | 1.3806 | ||
74 | 0.2520 | 75 | 0.2529 | 76 | 0.2549 | 79 | 0.2614 | 93 | 0.2999 | ||
12 | 0.0699 | 12 | 0.0657 | 13 | 0.0723 | 14 | 0.0754 | 15 | 0.0775 | ||
10 | 0.5825 | 10 | 0.4703 | 11 | 0.5512 | 13 | 0.5106 | 12 | 0.3455 | ||
10 | 0.3009 | 11 | 0.3062 | 11 | 0.3188 | 12 | 0.3080 | 14 | 0.3229 | ||
8 | 0.1915 | 8 | 0.1903 | 9 | 0.1975 | 9 | 0.1976 | 11 | 0.1738 | ||
5 | 0.1384 | 5 | 0.1237 | 6 | 0.1611 | 6 | 0.1592 | 7 | 0.1440 | ||
8 | 0.4700 | 8 | 0.4793 | 8 | 0.4771 | 11 | 0.4741 | 11 | 0.2776 | ||
9 | 0.2347 | 9 | 0.2299 | 9 | 0.2350 | 9 | 0.2369 | 12 | 0.2390 | ||
10 | 0.1665 | 10 | 0.1658 | 11 | 0.1604 | 11 | 0.1799 | 11 | 0.1733 | ||
7 | 0.1313 | 8 | 0.1565 | 9 | 0.1531 | 9 | 0.1678 | 9 | 0.1664 |
Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IT | CPU | IT | CPU | IT | CPU | IT | CPU | IT | CPU | ||
12 | 3.8865 | 12 | 4.0014 | 14 | 4.8745 | 16 | 5.3181 | 16 | 5.8238 | ||
16 | 5.0045 | 16 | 5.2044 | 16 | 5.3404 | 16 | 5.3438 | 20 | 6.8909 | ||
15 | 4.8586 | 15 | 4.9940 | 15 | 5.0187 | 14 | 4.7922 | 14 | 4.8349 | ||
15 | 4.8220 | 15 | 5.1933 | 15 | 5.0183 | 15 | 5.1233 | 15 | 5.2811 | ||
EI-GMRES | 33 | 8.5808 | 34 | 9.4610 | 35 | 8.5315 | 44 | 9.6189 | 277 | 30.6406 | |
219 | 23.6554 | 220 | 26.0373 | 227 | 23.1903 | 222 | 23.7048 | 293 | 27.4971 | ||
320 | 22.7231 | 321 | 19.7114 | 324 | 25.5421 | 346 | 22.8257 | 819 | 82.3304 | ||
31 | 1.1882 | 31 | 1.0294 | 32 | 1.0578 | 34 | 1.3804 | 35 | 1.1845 | ||
9 | 4.6557 | 10 | 5.2937 | 11 | 6.0840 | 13 | 5.0051 | 12 | 2.4285 | ||
10 | 2.3134 | 11 | 2.4929 | 12 | 2.2728 | 12 | 2.6970 | 14 | 2.6304 | ||
9 | 1.0883 | 9 | 1.1096 | 10 | 0.9939 | 10 | 0.9687 | 11 | 1.0648 | ||
7 | 0.6851 | 8 | 0.6855 | 8 | 0.6482 | 8 | 0.8094 | 9 | 0.7477 | ||
8 | 4.1514 | 8 | 4.1970 | 8 | 4.1532 | 11 | 4.1784 | 11 | 2.1912 | ||
9 | 1.7436 | 9 | 1.7654 | 9 | 1.8235 | 10 | 1.7920 | 12 | 1.5819 | ||
10 | 0.9174 | 10 | 0.9010 | 11 | 0.9029 | 11 | 0.9861 | 11 | 0.9318 | ||
9 | 0.5362 | 10 | 0.5933 | 10 | 0.6658 | 11 | 0.6811 | 11 | 0.7139 |
Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IT | CPU | IT | CPU | IT | CPU | IT | CPU | IT | CPU | ||
12 | 4.2890 | 12 | 4.5644 | 14 | 4.6339 | 16 | 5.5704 | 16 | 5.4510 | ||
16 | 5.1801 | 16 | 5.3446 | 16 | 5.2663 | 16 | 5.4883 | 20 | 6.5576 | ||
15 | 4.7688 | 15 | 5.3357 | 15 | 5.0471 | 14 | 4.8455 | 14 | 5.0261 | ||
15 | 4.8160 | 15 | 5.2069 | 15 | 5.5848 | 15 | 4.9962 | 15 | 5.4429 | ||
EI-GMRES | 33 | 7.9145 | 34 | 11.8086 | 34 | 8.2787 | 44 | 9.7776 | 277 | 29.8383 | |
219 | 21.0878 | 220 | 21.8016 | 227 | 23.4309 | 222 | 22.0786 | 293 | 32.1779 | ||
320 | 18.9017 | 321 | 18.3263 | 324 | 25.5726 | 346 | 20.8813 | 819 | 80.4379 | ||
31 | 1.3566 | 31 | 1.4166 | 32 | 1.3717 | 34 | 1.4684 | 35 | 1.1625 | ||
9 | 4.8221 | 10 | 4.9119 | 11 | 5.4390 | 13 | 5.3903 | 12 | 2.5764 | ||
10 | 1.9896 | 11 | 2.4368 | 12 | 2.5581 | 12 | 2.6989 | 14 | 2.2606 | ||
9 | 0.9322 | 9 | 0.9472 | 10 | 1.0677 | 10 | 1.1115 | 11 | 1.2455 | ||
7 | 0.6920 | 8 | 0.7421 | 8 | 0.7528 | 8 | 0.7582 | 9 | 0.7885 | ||
8 | 4.2393 | 8 | 4.5281 | 8 | 4.3064 | 11 | 4.2991 | 11 | 2.0287 | ||
9 | 1.5311 | 9 | 1.7552 | 9 | 1.7384 | 10 | 1.8320 | 12 | 1.5949 | ||
10 | 0.8088 | 10 | 0.8456 | 11 | 0.9061 | 11 | 0.8727 | 11 | 0.8555 | ||
9 | 0.5540 | 10 | 0.5974 | 10 | 0.6033 | 11 | 0.6705 | 11 | 0.7197 |
Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IT | CPU | IT | CPU | IT | CPU | IT | CPU | IT | CPU | ||
12 | 81.8281 | 16 | 105.4884 | 16 | 109.9203 | 16 | 105.9849 | 20 | 134.6659 | ||
16 | 107.4442 | 16 | 105.4884 | 16 | 109.9203 | 16 | 105.9849 | 20 | 134.6659 | ||
15 | 97.8574 | 15 | 100.7715 | 15 | 99.6838 | 15 | 98.3083 | 16 | 103.6864 | ||
15 | 101.0590 | 15 | 97.1670 | 15 | 102.1359 | 15 | 96.2878 | 15 | 99.9818 | ||
EI-GMRES | 32 | 133.6483 | 33 | 139.4299 | 34 | 141.4927 | 41 | 134.3916 | 264 | 369.5007 | |
212 | 312.7996 | 213 | 294.7765 | 212 | 313.8426 | 207 | 297.1443 | 277 | 338.1885 | ||
1004 | 1114.7164 | 1005 | 1050.4192 | 1006 | 1531.9104 | 1008 | 1019.2132 | 1009 | 1035.8507 | ||
123 | 40.5372 | 123 | 38.3368 | 124 | 37.9307 | 125 | 39.3624 | 131 | 40.6898 | ||
9 | 53.9215 | 10 | 59.0182 | 11 | 62.5487 | 13 | 57.8992 | 12 | 26.1145 | ||
10 | 22.3395 | 11 | 24.1635 | 12 | 25.8925 | 12 | 25.1441 | 15 | 24.8410 | ||
9 | 8.5960 | 10 | 9.4512 | 11 | 10.1539 | 11 | 10.0147 | 12 | 10.8725 | ||
8 | 4.4818 | 8 | 4.3435 | 8 | 4.4833 | 9 | 4.8736 | 9 | 4.9703 | ||
8 | 53.3623 | 8 | 54.2410 | 8 | 53.8772 | 11 | 52.2347 | 11 | 24.5139 | ||
9 | 19.7767 | 9 | 19.9295 | 9 | 20.6046 | 10 | 21.6593 | 12 | 18.5826 | ||
10 | 8.5884 | 10 | 8.5899 | 11 | 9.4848 | 11 | 9.2194 | 11 | 9.4156 | ||
9 | 3.5892 | 10 | 4.0119 | 10 | 3.9536 | 11 | 4.2778 | 11 | 4.3012 |
Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IT | CPU | IT | CPU | IT | CPU | IT | CPU | IT | CPU | ||
12 | 81.4266 | 13 | 86.6890 | 14 | 94.4300 | 18 | 116.0574 | 16 | 101.5482 | ||
16 | 104.3243 | 16 | 106.3716 | 16 | 109.3637 | 16 | 109.1431 | 20 | 137.9688 | ||
15 | 110.6812 | 15 | 104.7531 | 15 | 99.7118 | 15 | 98.5565 | 16 | 105.2505 | ||
15 | 113.4792 | 15 | 110.8891 | 15 | 104.3281 | 15 | 110.8320 | 15 | 111.7145 | ||
EI-GMRES | 32 | 146.2052 | 33 | 140.7934 | 33 | 141.0543 | 41 | 133.7156 | 264 | 381.4948 | |
212 | 309.2196 | 213 | 309.0034 | 212 | 311.9646 | 207 | 289.9215 | 278 | 332.9411 | ||
1004 | 1015.9542 | 1005 | 1006.3369 | 1006 | 1038.2084 | 1008 | 1012.9365 | 1009 | 1036.8108 | ||
123 | 37.8935 | 123 | 40.9428 | 124 | 39.3744 | 125 | 44.0573 | 131 | 43.2647 | ||
9 | 54.0646 | 10 | 59.5861 | 11 | 62.9363 | 13 | 57.6960 | 12 | 26.0438 | ||
10 | 22.0596 | 11 | 23.8576 | 12 | 26.0655 | 12 | 25.7485 | 15 | 25.0688 | ||
9 | 8.7380 | 10 | 9.4483 | 11 | 10.2397 | 11 | 10.2184 | 12 | 10.7271 | ||
8 | 4.4882 | 8 | 4.4240 | 8 | 4.4115 | 9 | 4.9650 | 9 | 4.8197 | ||
8 | 53.7306 | 8 | 53.8112 | 8 | 53.8167 | 11 | 52.1213 | 11 | 23.9081 | ||
9 | 19.4848 | 9 | 20.0403 | 9 | 20.1023 | 10 | 21.9683 | 12 | 19.1874 | ||
10 | 8.6292 | 10 | 8.5744 | 11 | 9.3201 | 11 | 9.1705 | 11 | 8.8240 | ||
9 | 3.5368 | 10 | 3.8886 | 10 | 4.2097 | 11 | 4.3156 | 11 | 4.4294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, X.-H.; Dong, J.-R. Two Preconditioners for Time-Harmonic Eddy-Current Optimal Control Problems. Mathematics 2024, 12, 375. https://doi.org/10.3390/math12030375
Shao X-H, Dong J-R. Two Preconditioners for Time-Harmonic Eddy-Current Optimal Control Problems. Mathematics. 2024; 12(3):375. https://doi.org/10.3390/math12030375
Chicago/Turabian StyleShao, Xin-Hui, and Jian-Rong Dong. 2024. "Two Preconditioners for Time-Harmonic Eddy-Current Optimal Control Problems" Mathematics 12, no. 3: 375. https://doi.org/10.3390/math12030375
APA StyleShao, X. -H., & Dong, J. -R. (2024). Two Preconditioners for Time-Harmonic Eddy-Current Optimal Control Problems. Mathematics, 12(3), 375. https://doi.org/10.3390/math12030375