Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for –Godunova–Levin Preinvex Function with Applications and Two Open Problems
Abstract
:1. Introduction
- Novelty and Significance
2. Preliminaries
2.1. Interval Operations
- : positive intervals of ;
- : negative intervals of ;
- : all intervals of .
- : interval degenerated;
- ≤: standard order relation;
- : Kulisch and Miranker relations.
2.2. Integral of
- Some Novel Definitions via Kulisch and Miranker Inclusion Relations
3. Hermite–Hadamard-Type Inclusions for –Godunova–Levin Preinvex Mappings
- Setting , and Theorem 4 incorporates results for h-convex functions.
- Setting , and Theorem 4 incorporates results for h- functions.
- Weighted Fejér-Type Inclusions For --Preinvex Functions
- If , then Theorem 5 incorporates results for preinvex functions, that is,
- If and , then Theorem 5 incorporates results for functions, and this is also new as well, that is,
- If and , then Theorem 5 incorporates results for convex functions, that is,
- If , then Theorem 6 incorporates results for preinvex functions, that is,
- If , then Theorem 6 incorporates results for - function, that is,
- If and , then Theorem 6 incorporates results for convex functions, that is,
4. Applications of Some Novel Results to Numerical Integration Rule
4.1. Applications to Numerical Trapezoidal Formula on Set-Valued Mappings
4.2. Some Further Applications to Trapezoidal Formula and the Probability Density Function
4.3. Trapezoidal Formula
4.4. Associating Probability Density Function with Trapezoidal-Type Inequality
4.5. Applications Associated with Special Functions
4.6. Applications to Special Means
- The arithmetic mean:
- The following defines the logarithmic mean in its generalized form:
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chumpungam, D.; Sarnmeta, P.; Suantai, S. An Accelerated Convex Optimization Algorithm with Line Search and Applications in Machine Learning. Mathematics 2022, 10, 1491. [Google Scholar] [CrossRef]
- Carr, P.; Zhu, Q.J. (Eds.) SpringerBriefs in Mathematics; Springer International Publishing: Cham, Switzerland, 2018; pp. 83–106. ISBN 9783319924922. [Google Scholar]
- Einy, E.; Shitovitz, B. Convex Games and Stable Sets. Games Econ. Behav. 1996, 16, 192–201. [Google Scholar] [CrossRef]
- Huntul, M.J. Reconstructing the Time-Dependent Thermal Coefficient in 2D Free Boundary Problems. Comput. Mater. Contin. 2021, 67, 3681–3699. [Google Scholar] [CrossRef]
- Tamsir, M.; Huntul, M.J. A Numerical Approach for Solving Fisher’s Reaction–Diffusion Equation via a New Kind of Spline Functions. Ain Shams Eng. J. 2021, 12, 3157–3165. [Google Scholar] [CrossRef]
- Dhiman, N.; Huntul, M.J.; Tamsir, M. A Modified Trigonometric Cubic B-Spline Collocation Technique for Solving the Time-Fractional Diffusion Equation. Eng. Comput. 2021, 38, 2921–2936. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. New Perspective of Log-Convex Functions. Appl. Math. Inf. Sci. 2020, 14, 847–854. [Google Scholar]
- Afzal, W.; Shabbir, K.; Arshad, M.; Asamoah, J.K.K.; Galal, A.M. Some Novel Estimates of Integral Inequalities for a Generalized Class of Harmonical Convex Mappings by Means of Center-Radius Order Relation. J. Math. 2023, 2023, 8865992. [Google Scholar] [CrossRef]
- Almalki, Y.; Afzal, W. Some New Estimates of Hermite–Hadamard Inequalities for Harmonical Cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings. Mathematics 2023, 11, 4041. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Hamali, W.; Mahnashi, A.M.; Sen, M.D. La Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions. Fractal Fract. 2023, 7, 687. [Google Scholar] [CrossRef]
- Abbas, M.; Afzal, W.; Botmart, T.; Galal, A.M.; Abbas, M.; Afzal, W.; Botmart, T.; Galal, A.M. Jensen, Ostrowski and Hermite-Hadamard Type Inequalities for h-Convex Stochastic Processes by Means of Center-Radius Order Relation. AIMS Math. 2023, 8, 16013–16030. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Shabbir, K.; Treanţă, S.; De la Sen, M. Some Novel Estimates of Hermite–Hadamard and Jensen Type Inequalities for (h1, h2)-convex functions pertaining to total rder relation. Mathematics 2022, 10, 4777. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Eldin, S.M.; Khan, Z.A.; Afzal, W.; Abbas, M.; Eldin, S.M.; Khan, Z.A. Some Well Known Inequalities for (h1, h2)-Convex Stochastic Process via Interval Set Inclusion Relation. AIMS Math. 2023, 8, 19913–19932. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur L’étude des Fonctions, Données par Leur déVeloppement de Taylor. J. Pure Appl. Math. 1892, 4, 101–186. [Google Scholar]
- Jain, S.; Mehrez, K.; Baleanu, D.; Agarwal, P. Certain Hermite–Hadamard Inequalities for Logarithmically Convex Functions with Applications. Mathematics 2019, 7, 163. [Google Scholar] [CrossRef]
- Hanson, M.A. On sufficiency of the Kun-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef]
- Weir, T.; Mond, B. Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
- Suneja, S.K.; Singh, C.; Bector, C.R. Generalization of preinvex and B-vex functions. J. Optim. Theory Appl. 1993, 76, 577–587. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard Inequalities for h-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Noor, K.I.; Khan, A.G. Some new classes of convex functions and inequalities. Miskolc Math. Notes 2018, 19, 77–94. [Google Scholar] [CrossRef]
- Almutairi, O.; Kılıçman, A. Some Integral Inequalities for H-Godunova-Levin Preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef]
- Breckner, W.W. Continuity of generalized convex and generalized concave set-valued functions. Rev. Anal. Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
- An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard Type Inequalities for Interval (h1, h2)-Convex Functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators. Int. J. Comput. Intell. Syst 2022, 15, 8. [Google Scholar] [CrossRef]
- Liu, P.; Bilal Khan, M.; Noor, M.A.; Noor, K.I. On Strongly Generalized Preinvex Fuzzy Mappings. J. Math. 2021, 2021, 6657602. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.-M. Post Quantum Integral Inequalities of Hermite-Hadamard-Type Associated with Coordinated Higher-Order Generalized Strongly Pre-Invex and Quasi-Pre-Invex Mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef]
- Khurshid, Y.; Adil Khan, M.; Chu, Y.-M.; Khan, Z.A. Hermite-Hadamard-Fejér Inequalities for Conformable Fractional Integrals via Preinvex Functions. J. Funct. Spaces 2019, 2019, 3146210. [Google Scholar] [CrossRef]
- Barani, A.; Pouryayevali, M.R. Invex Sets and Preinvex Functions on Riemannian Manifolds. J. Math. Anal. Appl. 2007, 328, 767–779. [Google Scholar] [CrossRef]
- Nasir, J.; Qaisar, S.; Butt, S.I.; Qayyum, A.; Nasir, J.; Qaisar, S.; Butt, S.I.; Qayyum, A. Some Ostrowski Type Inequalities for Mappings Whose Second Derivatives Are Preinvex Function via Fractional Integral Operator. AIMS Math. 2022, 7, 3303–3320. [Google Scholar] [CrossRef]
- Lai, K.K.; Mishra, S.K.; Bisht, J.; Hassan, M. Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions. Symmetry 2022, 14, 771. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Du, T. Certain Error Bounds on the Parameterized Integral Inequalities in the Sense of Fractal Sets. Chaos Solitons Fractals 2022, 161, 112328. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-Type Inequalities for Interval-Valued Preinvex Functions via Riemann–Liouville Fractional Integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Zhou, H.; Saleem, M.S.; Nazeer, W.; Shah, A.F.; Zhou, H.; Saleem, M.S.; Nazeer, W.; Shah, A.F. Hermite-Hadamard Type Inequalities for Interval-Valued Exponential Type Pre-Invex Functions via Riemann-Liouville Fractional Integrals. AIMS Math. 2022, 7, 2602–2617. [Google Scholar] [CrossRef]
- Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down h-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Abbas, M.; Treanţă, S.; De la Sen, M. Some New Generalizations of Integral Inequalities for Harmonical cr-(h1, h2)-Godunova–Levin Functions and Applications. Mathematics 2022, 10, 4540. [Google Scholar] [CrossRef]
- Kashuri, A.; Liko, R. Hermite-Hadamard Type Inequalities for Generalized (s, m, φ)-Preinvex Godunova-Levin Functions. Rad Hrvatske akademije znanosti i umjetnosti. Mat. Znan. 2018, 515, 63–75. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I. Conformable Fractional Hermite-Hadamard Inequalities via Preinvex Functions. Tbilisi Math. J. 2017, 10, 129–141. [Google Scholar] [CrossRef]
- Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Noor, M.; Noor, K.; Rashid, S. Some New Classes of Preinvex Functions and Inequalities. Mathematics 2018, 7, 29. [Google Scholar] [CrossRef]
- Bombardelli, M.; Varošanec, S. Properties of h-Convex Functions Related to the Hermite–Hadamard–Fejér Inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef]
- Mohan, S.R.; Neogy, S.K. On Invex Sets and Preinvex Functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef]
- Zhang, X.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions. J. Math. 2022, 2022, 3830324. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard Type Inequalities for h-Convex Interval-Valued Functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
- Barani, A.; Ghazanfari, A.G.; Dragomir, S.S. Hermite-Hadamard Inequality for Functions Whose Derivatives Absolute Values Are Preinvex. J. Inequalities Appl. 2012, 2012, 247. [Google Scholar] [CrossRef]
- Özdemir, M.E. Some inequalities for the s-Godunova-Levin type functions. Math. Sci. 2015, 9, 27–32. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Botmart, T.; Afzal, W.; Shabbir, K.; Botmart, T. Generalized Version of Jensen and Hermite-Hadamard Inequalities for Interval-Valued (h1, h2)-Godunova-Levin Functions. AIMS Math. 2022, 7, 19372–19387. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Trapezoidal Formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Gavrea, B. A Hermite–Hadamard Type Inequality with Applications to the Estimation of Moments of Continuous Random Variables. Appl. Math. Comput. 2015, 254, 92–98. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X. Variance of Uncertain Random Variables. J. Uncertain. Anal. Appl. 2014, 2, 6. [Google Scholar] [CrossRef]
- Rostamian Delavar, M.; Dragomir, S.S.; De La Sen, M. Estimation Type Results Related to Fejér Inequality with Applications. J. Inequal. Appl. 2018, 2018, 85. [Google Scholar] [CrossRef]
- Komisarski, A.; Rajba, T. On the Integral Representation and the Raşa, Jensen and Hermite–Hadamard Inequalities for Box-Convex Functions. Results Math. 2023, 78, 89. [Google Scholar] [CrossRef]
- Erden, S.; Sarikaya, M.; Budak, H. New Weighted Inequalities for Higher Order Derivatives and Applications. Filomat 2018, 32, 4419–4433. [Google Scholar] [CrossRef]
- Román-Flores, H.; Ayala, V.; Flores-Franulič, A. Milne Type Inequality and Interval Orders. Comp. Appl. Math. 2021, 40, 130. [Google Scholar] [CrossRef]
- Stefanini, L. A Generalization of Hukuhara Difference and Division for Interval and Fuzzy Arithmetic. Fuzzy Sets Syst. 2010, 161, 1564–1584. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadini, A.A.H.; Afzal, W.; Abbas, M.; Aly, E.S.
Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for
Ahmadini AAH, Afzal W, Abbas M, Aly ES.
Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for
Ahmadini, Abdullah Ali H., Waqar Afzal, Mujahid Abbas, and Elkhateeb S. Aly.
2024. "Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for
Ahmadini, A. A. H., Afzal, W., Abbas, M., & Aly, E. S.
(2024). Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for