Simulation of a Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili Equation via Two Different Methods
Abstract
:1. Introduction
2. Methodology
2.1. The Generalized Kudryashov Technique
2.2. The Exponential Rational Function Technique (ERFT)
- Step 1.
- Step 2.
- Putting Equation (8) into Equation (4) and separating all terms with the same order of , we convert the left-hand side of Equation (4) into another polynomial in . Then, we equate each coefficient of this polynomial to zero, yielding a set of algebraic equations for unknown parameters. Finally, we solve the equation system to construct a variety of exact solutions for Equation (2).
3. Implementations
3.1. Implementation of the GKT to the Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili and B-Type Kadomtsev–Petviashvili Equations
3.2. Implementation of the ERFT to the Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili and B-Type Kadomtsev–Petviashvili Equations
4. Stability Analysis and Graphical Representations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lu, X.; Ma, W.X. Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 2016, 85, 1217–1222. [Google Scholar] [CrossRef]
- Ismael, H.F.; Nabi, H.R.; Sulaiman, T.A.; Shah, N.A.; Eldin, S.M.; Bulut, H. Hybrid and physical interaction phenomena solutions to the Hirota bilinear equation in shallow water waves theory. Results Phys. 2023, 53, 106978. [Google Scholar] [CrossRef]
- Ma, W.X. Reduced Non-Local Integrable NLS Hierarchies by Pairs of Local and Non-Local Constraints. Int. J. Comput. 2022, 8, 206. [Google Scholar] [CrossRef]
- Kaplan, M.; Ozer, M.N. Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation. Opt. Quantum Electron. 2018, 50, 33. [Google Scholar] [CrossRef]
- Ray, S.S. New Soliton and Periodic Wave Solutions to the Fractional DGH Equation Describing Water Waves in a Shallow Regime. Qual. Theory Dyn. Syst. 2022, 21, 151. [Google Scholar]
- Kumar, S.; Kumar, A. Newly generated optical wave solutions and dynamical behaviors of the highly nonlinear coupled Davey-Stewartson Fokas system in monomode optical fibers. Opt. Quantum Electron. 2023, 55, 566. [Google Scholar] [CrossRef]
- Alotaibi, H. Explore Optical Solitary Wave Solutions of the kp Equation by Recent Approaches. Crystals 2022, 12, 159. [Google Scholar] [CrossRef]
- Raza, N.; Seadawy, A.R.; Salman, F. Extraction of new optical solitons in presence of fourth-order dispersion and cubic-quintic nonlinearity. Opt. Quantum Electron. 2023, 55, 370. [Google Scholar] [CrossRef]
- Akbulut, A.; Kaplan, M.; Kaabar, M.K.A. New exact solutions of the Mikhailov-Novikov-Wang equation via three novel techniques. J. Ocean. Eng. Sci. 2023, 8, 103–110. [Google Scholar] [CrossRef]
- Hosseini, K.; Salahshour, S.; Baleanu, D.; Mirzazadeh, M.; Dehingia, K. A new generalized KdV equation: Its lump-type, complexiton and soliton solutions. Int. J. Mod. Phys. 2022, 36, 2250229. [Google Scholar] [CrossRef]
- Cortez, M.V.; Raza, N.; Kazmi, S.S.; Chahlaoui, Y.; Basendwah, G.A. A novel investigation of dynamical behavior to describe nonlinear wave motion in (3+1)-dimensions. Results Phys. 2023, 55, 107131. [Google Scholar] [CrossRef]
- Haque, M.M.; Akbar, M.A.; Rezazadeh, H.; Bekir, A. A variety of optical soliton solutions in closed-form of the nonlinear cubic quintic Schrödinger equations with beta derivative. Opt. Quantum Electron. 2023, 55, 1144. [Google Scholar] [CrossRef]
- Alam, M.N.; Islam, S.; Ilhan, O.A.; Bulut, H. Some new results of nonlinear model arising in incompressible visco-elastic Kelvin-Voigt fluid. Math. Meth. Appl. Sci. 2022, 45, 10347–10362. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, Z.; Triki, H.; Mirzazadeh, M.; Liu, W.; Biswas, A.; Zhou, Q. Analytical study of three-soliton interactions with different phases in nonlinear optics. Nonlinear Dyn. 2023, 111, 18391–18400. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, R.K.; Jiwari, R. Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion-advection equation with variable coefficients. Chin. Phys. B 2014, 23, 030201. [Google Scholar] [CrossRef]
- Kumar, S.; Jiwari, R.; Mittal, R.C.; Awrejcewicz, J. Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model. Nonlinear Dyn. 2021, 104, 661–682. [Google Scholar] [CrossRef]
- Jiwari, A.R. New multiple analytic solitonary solutions and simulation of (2+1)-dimensional generalized Benjamin-Bona-Mahony-Burgers model. Nonlinear Dyn. 2023, 111, 13297–13325. [Google Scholar]
- Ma, W.X. N-soliton solution of a combined pkp-bkp equation. J. Geom. Phys. 2021, 165, 104191. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Fei, J.X.; Cao, W.P.; Wu, H.L. The explicit solution and its soliton molecules in the (2+1)-dimensional pkp-bkp equation. Results Phys. 2022, 35, 105363. [Google Scholar] [CrossRef]
- Feng, Y.; Bilige, S. Resonant multi-soliton, m-breather, m-lump and hybrid solutions of a combined pkp-bkp equation. J. Geom. Phys. 2021, 169, 104322. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik 2019, 194, 163060. [Google Scholar] [CrossRef]
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef]
- Habib, M.A.; Ali, H.M.S.; Miah, M.M.; Akbar, M.A. The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs. Aims Math. 2019, 4, 896–909. [Google Scholar] [CrossRef]
- Ekici, M. Exact Solutions to Some Nonlinear Time-Fractional Evolution Equations Using the Generalized Kudryashov Method in Mathematical Physics. Symmetry 2023, 15, 1961. [Google Scholar] [CrossRef]
- Ghanbari, B.; Inc, M. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus 2018, 133, 142. [Google Scholar] [CrossRef]
- Ahmed, N.; Bibi, S.; Khan, U.; Mohyud-Din, S.T. A new modification in the exponential rational function method for nonlinear fractional differential equations. Eur. Phys. J. Plus 2018, 133, 45. [Google Scholar] [CrossRef]
- Bekir, A.; Kaplan, M. Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 2016, 54, 365–370. [Google Scholar] [CrossRef]
- Yue, C.; Khater, M.M.A.; Attia, R.A.M.; Lu, D. The plethora of explicit solutions of the fractional KS equation through liquid–gas bubbles mix under the thermodynamic conditions via Atangana–Baleanu derivative operator. Adv. Differ. Equ. 2020, 2020, 62. [Google Scholar] [CrossRef]
- Sedawy, A.R.; Lu, D.; Yue, C. Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability. J. Taibah Univ. Sci. 2017, 11, 623–633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadalla, M.; Akbulut, A.; Alahmadi, J. Simulation of a Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili Equation via Two Different Methods. Mathematics 2024, 12, 427. https://doi.org/10.3390/math12030427
Awadalla M, Akbulut A, Alahmadi J. Simulation of a Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili Equation via Two Different Methods. Mathematics. 2024; 12(3):427. https://doi.org/10.3390/math12030427
Chicago/Turabian StyleAwadalla, Muath, Arzu Akbulut, and Jihan Alahmadi. 2024. "Simulation of a Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili Equation via Two Different Methods" Mathematics 12, no. 3: 427. https://doi.org/10.3390/math12030427
APA StyleAwadalla, M., Akbulut, A., & Alahmadi, J. (2024). Simulation of a Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili Equation via Two Different Methods. Mathematics, 12(3), 427. https://doi.org/10.3390/math12030427