Feasibility of Six Metaheuristic Solutions for Estimating Induction Motor Reactance
Abstract
:1. Introduction
- Using information regarding the maximum torque, current, and comprehensive load test results [13].
- Making use of the findings from the locker rotor and no-load evaluations.
2. Structure and Equivalent Circuit Models of Squirrel-Cage Induction Motors
3. Established Dataset
4. Methodology
4.1. Artificial Neural Network (ANN)
4.2. Hybrid Model Development
4.2.1. Multi-VERSE OPTIMIZATION (MVO)
4.2.2. Cuckoo Optimization Algorithm (COA)
4.2.3. Heap-Based Optimization (HBO)
The CRH Concept’s Modeling
The Interaction’s Modeling with the Direct Manager
Modeling of the Interactivity between the Subordinators
The Employee’s Self-Contribution Modeling
Position Update
4.2.4. Leagues Championship Algorithm (LCA)
A League Schedule’s Generation
Evaluating Winner/Loser
A New Team Formation
4.2.5. Osprey Optimization Algorithm (OOA)
Stage 1: Positions’ Identification and Fish Hunting (Exploration)
Stage 2: Transporting the Fish to the Appropriate Spot (Exploitation)
4.2.6. Sooty Tern Optimization Algorithm (STOA)
Migration Behavior (Exploration)
Attacking Treatment (Exploitation)
5. Results and Discussion
Taylor Diagram
6. Practical Implementation
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial neural networks |
HBO | Heap-based optimization |
LCA | Leagues championship algorithm |
MVO | Multi-verse optimization |
OOA | Osprey optimization algorithm |
COA | Cuckoo optimization algorithm |
STOA | Sooty tern optimization algorithm |
MLP | Multi-layer perceptron |
GA | Genetic algorithm |
ABC | Artificial bee colony |
AC | Alternating current |
DC | Direct current |
MAE | Mean average error |
RMSE | Root mean square error |
R2 | Coefficient of determination |
WEP | Wormhole existence probability |
TDR | Traveling distance rate |
CRH | Corporate rank hierarchy |
CF | Correlation factor |
IM | Induction motor |
Xm | Motor reactance |
P(KW) | Rated power |
cos(ρFL) | Full load power factor |
/ | Maximum torque to total load torque |
/ | Initial torque to total load torque |
/ | Initial current to total load current |
Angular velocity | |
Full load efficiency |
References
- Nardo, M.D.; Marfoli, A.; Degano, A.; Gerada, C. Rotor slot design of squirrel cage induction motors with improved rated efficiency and starting capability. IEEE Trans. Ind. Appl. 2022, 58, 3383–3393. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, S.H.; Park, J.H.; Kim, J.M.; Choi, J.Y. Experimental and analytical study of single-phase squirrel-cage induction motor considering end-ring porosity rate. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Xiao, X.; Li, Y. A Robust Damping Control for Virtual Synchronous Generators Based on Energy Reshaping. IEEE Trans. Energy Convers. 2023, 38, 2146–2159. [Google Scholar] [CrossRef]
- Jirdehi, M.A.; Rezaei, A. Parameters estimation of squirrel-cage induction motors using ANN and ANFIS. Alex. Eng. J. 2016, 55, 357–368. [Google Scholar] [CrossRef]
- Song, X.; Wang, H.; Ma, X.; Yuan, X.; Wu, X. Robust model predictive current control for a nine-phase open-end winding PMSM with high computational efficiency. IEEE Trans. Power Electron. 2023, 38, 13933–13943. [Google Scholar] [CrossRef]
- Çetin, O.; Dalcalı, A.; Temurtaş, F. A comparative study on parameters estimation of squirrel cage induction motors using neural networks with unmemorized training. Eng. Sci. Technol. Int. J. 2020, 23, 1126–1133. [Google Scholar] [CrossRef]
- Silva, A.M.; Alberto, J.; Antunes, C.H.; Ferreira, F.J.T.E. A Stochastic Optimization Approach to the Estimation of Squirrel-Cage Induction Motor Equivalent Circuit Parameters. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 23–26 August 2020. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, D.; Liang, W.; Zhang, X. Current reconstruction of three-phase voltage source inverters considering current ripple. IEEE Trans. Transp. Electrif. 2022, 9, 1416–1427. [Google Scholar] [CrossRef]
- Ocak, C. A FEM-Based Comparative Study of the Effect of Rotor Bar Designs on the Performance of Squirrel Cage Induction Motors. Energies 2023, 16, 6047. [Google Scholar] [CrossRef]
- Abunike, C.E.; Akuru, U.B.; Okoro, O.I.; Awah, C.C. Sizing, Modeling, and Performance Comparison of Squirrel-Cage Induction and Wound-Field Flux Switching Motors. Mathematics 2023, 11, 3596. [Google Scholar] [CrossRef]
- Agah, G.R.; Rahideh, A.; Faradonbeh, V.Z.; Hedayati, K.S. Stator Winding Inter-Turn Short-Circuit Fault Modeling and Detection of Squirrel-Cage Induction Motors. IEEE Trans. Transp. Electrif. 2023. [Google Scholar] [CrossRef]
- Du, J.; Li, Y. Analysis on the Variation Laws of Electromagnetic Force Wave and Vibration Response of Squirrel-Cage Induction Motor under Rotor Eccentricity. Electronics 2023, 12, 1295. [Google Scholar] [CrossRef]
- Pedra, J.; Sainz, L.; Córcoles, F. Study of aggregate models for squirrel-cage induction motors. IEEE Trans. Power Syst. 2005, 20, 1519–1527. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Jin, H.; Li, H. High-Dynamic and Low-Cost Sensorless Control Method of High-Speed Brushless DC Motor. IEEE Trans. Ind. Inform. 2023, 19, 5576–5584. [Google Scholar] [CrossRef]
- Özsoy, M.; Kaplan, O.; Akar, M. FEM-based analysis of rotor cage material and slot geometry on double air gap axial flux induction motors. Ain Shams Eng. J. 2024, 15, 102393. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Wang, S.; Wang, K.; Sial, M.B. Finite-time adaptive dynamic surface synchronization control for dual-motor servo systems with backlash and time-varying uncertainties. ISA Trans. 2023, 137, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, T.; Chu, F.; Han, Q.; Qin, Z.; Zuo, M.J. Scaling-basis chirplet transform. IEEE Trans. Ind. Electron. 2021, 68, 8777–8788. [Google Scholar] [CrossRef]
- Zheng, W.; Gong, G.; Tian, J.; Lu, S.; Wang, R.; Yin, Z.; Li, X.; Yin, L. Design of a Modified Transformer Architecture Based on Relative Position Coding. Int. J. Comput. Intell. Syst. 2023, 16, 168. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, Z.; Hu, J.; Ghosh, B.K. Event-triggered critic learning impedance control of lower limb exoskeleton robots in interactive environments. Neurocomputing 2024, 564, 126963. [Google Scholar] [CrossRef]
- Miaofen, L.; Youmin, L.; Tianyang, W.; Fulei, C.; Zhike, P. Adaptive synchronous demodulation transform with application to analyzing multicomponent signals for machinery fault diagnostics. Mech. Syst. Signal Process. 2023, 191, 110208. [Google Scholar] [CrossRef]
- Araoye, T.O.; Ashigwuike, E.C.; Adeyemi, A.C.; Egoigwe, S.V.; Ajah, N.G.; Eronu, E. Reduction and control of harmonic on three-phase squirrel cage induction motors with voltage source inverter (VSI) using ANN-grasshopper optimization shunt active filters (ANN-GOSAF). Sci. Afr. 2023, 21, e01785. [Google Scholar] [CrossRef]
- Milykh, V.I. Numerical-field analysis of active and reactive winding parameters and mechanical characteristics of a squirrel-cage induction motor. Electr. Eng. Electromech. 2023, 4, 3–13. [Google Scholar] [CrossRef]
- Kojooyan, J.H.; Monjo, L.; Córcoles, F.; Pedra, J. Using the instantaneous power of a free acceleration test for squirrel-cage motor parameters estimation. IEEE Trans. Energy Convers. 2015, 30, 974–982. [Google Scholar] [CrossRef]
- Tseligorov, N.; Ozersky, A.I.; Chubikin, A.V.; Tseligorova, E.N. Development of a robust scalar control system for an induction squirrel-cage motor based on a linearized vector model. WSEAS Trans. Comput. 2022, 21, 1–9. [Google Scholar] [CrossRef]
- Fortes, M.Z.; Ferreira, V.H.; Coelho, A.P.F. The induction motor parameter estimation using genetic algorithm. IEEE Lat. Am. Trans. 2013, 11, 1273–1278. [Google Scholar] [CrossRef]
- Abro, A.G.; Saleh, J.M. Multiple-global-best guided artificial bee colony algorithm for induction motor parameter estimation. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 620–636. [Google Scholar] [CrossRef]
- Gomez, G.M.; Jurado, F.; Pérez, I. Shuffled frog-leaping algorithm for parameter estimation of a double-cage asynchronous machine. IET Electr. Power Appl. 2012, 6, 484–490. [Google Scholar] [CrossRef]
- Yan, Z.; Wen, H. Electricity theft detection base on extreme gradient boosting in AMI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Feng, H.; Cui, X.; Si, J.; Gao, C.; Hu, Y. Equivalent Circuit Model of Novel Solid Rotor Induction Motor with Toroidal Winding Applying Composite Multilayer Theory. Appl. Sci. 2019, 9, 3288. [Google Scholar] [CrossRef]
- Ganesh, K.P.; Mary, A.D. Speed Estimation and Equivalent Circuit Parameter Determination of Induction Motor Using Virtual Instrumentation. In Proceedings of the 2016 International Conference on Next Generation Intelligent Systems (ICNGIS), Kottayam, India, 1–3 September 2016. [Google Scholar] [CrossRef]
- Aryza, S.; Irwanto, M.; Lubis, Z.; Siahaan, A.P.U.; Rahim, R.; Furqan, M. A Novelty Design of Minimization of Electrical Losses in A Vector Controlled Induction Machine Drive. IOP Conf. Ser. Mater. Sci. Eng. 2018, 300, 012067. [Google Scholar] [CrossRef]
- Al-Jufout, S.A.; Al-Rousan, W.H.; Wang, C. Optimization of Induction Motor Equivalent Circuit Parameter Estimation Based on Manufacturer’s Data. Energies 2018, 11, 1792. [Google Scholar] [CrossRef]
- Mishra, R.N.; Mohanty, K.B. Real time implementation of an ANFIS-based induction motor drive via feedback linearization for performance enhancement. Eng. Sci. Technol. Int. J. 2016, 19, 1714–1730. [Google Scholar] [CrossRef]
- Ding, Z.; Wu, X.; Chen, C.; Yuan, X. Magnetic Field Analysis of Surface-Mounted Permanent Magnet Motors Based on an Improved Conformal Mapping Method. IEEE Trans. Ind. Appl. 2023, 59, 1689–1698. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C. Direct harmonic current control scheme for dual three-phase PMSM drive system. IEEE Trans. Power Electron. 2021, 36, 11647–11657. [Google Scholar] [CrossRef]
- Wang, H.; Sun, W.; Jiang, D.; Qu, R. A MTPA and flux-weakening curve identification method based on physics-informed network without calibration. IEEE Trans. Power Electron. 2023, 38, 12370–12375. [Google Scholar] [CrossRef]
- Idir, K.; Chang, L.; Dai, H. A Neural Network-Based Optimization Approach for Induction Motor Design. In Proceedings of the 1996 Canadian Conference on Electrical and Computer Engineering, Calgary, AB, Canada, 26–29 May 1996. [Google Scholar] [CrossRef]
- Im, D.H.; Park, S.C.; Park, D.J. Optimum Design of Single-Sided Linear Induction Motor Using the Neural Networks and Finite Element Method. In Proceedings of the 1993 International Conference on Neural Networks (IJCNN), Nagoya, Japan, 25–29 October 1993. [Google Scholar] [CrossRef]
- Drabek, T. Derating of Squirrel-Cage Induction Motor Due to Rotating Harmonics in Power Voltage Supply. Energies 2023, 16, 735. [Google Scholar] [CrossRef]
- Marfoli, A.; DiNardo, M.; Degano, M.; Gerada, C.; Jara, W. Squirrel cage induction motor: A design-based comparison between aluminium and copper cages. IEEE Open J. Ind. Appl. 2021, 2, 110–120. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Wang, H.; Zhang, Q.; Luo, X.; Xu, H.; Xiong, Y. Multi-objective optimum design of five-phase squirrel cage induction motor by differential evolution algorithm. Energy Rep. 2022, 8, 51–62. [Google Scholar] [CrossRef]
- Kumar, P.; Hati, A.S. Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors. Expert Syst. Appl. 2022, 191, 116290. [Google Scholar] [CrossRef]
- Perin, M.; da Silveira, G.B.; Pereira, L.A.; Haffner, S.; Almansa, D.M.S. Estimation of Electrical Parameters of the Double-Cage Model of Induction Motors Using Manufacturer Data and Genetic Algorithm. In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022. [Google Scholar] [CrossRef]
- Tulicki, J.; Sobczyk, T.J.; Sułowicz, M. Diagnostics of A Double-Cage Induction Motor Under Steady State with the Rotor Asymmetry. In Proceedings of the 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Chania, Greece, 28–31 August 2023. [Google Scholar] [CrossRef]
- Karakaya, A. Modeling of Induction Motor and Speed Analysis of Modern Control Methods. Karaelmas Sci. Eng. J. 2017, 7, 497–502. Available online: https://dergipark.org.tr/en/download/article-file/1329457 (accessed on 30 January 2024).
- Monjo, L.; Kojooyan-Jafari, H.; Corcoles, F.; Pedra, J. Squirrel-cage induction motor parameter estimation using a variable frequency test. IEEE Trans. Energy Convers. 2014, 30, 550–557. [Google Scholar] [CrossRef]
- Pedra, J.; Corcoles, F. Estimation of induction motor double-cage model parameters from manufacturer data. IEEE Trans. Energy Convers. 2004, 19, 310–317. [Google Scholar] [CrossRef]
- Mo, J.; Yang, H. Sampled Value Attack Detection for Busbar Differential Protection Based on a Negative Selection Immune System. J. Mod. Power Syst. Clean Energy 2023, 11, 421–433. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Zhou, X.; Liu, X.; Zhang, G.; Jia, L.; Wang, X.; Zhao, Z. An iterative threshold algorithm of log-sum regularization for sparse problem. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4728–4740. [Google Scholar] [CrossRef]
- Moayedi, H.; Ghareh, S.; Foong, L.K. Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling. Eng. Comput. 2022, 38, 1331–1347. [Google Scholar] [CrossRef]
- Zhou, G.; Moayedi, H.; Bahiraei, M.; Lyu, Z. Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Prod. 2020, 254, 120082. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Applic. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Frome, UK, 2010. [Google Scholar]
- Askari, Q.; Saeed, M.; Younas, I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst. Appl. 2020, 161, 113702. [Google Scholar] [CrossRef]
- Kashan, A.H. League Championship Algorithm: A New Algorithm for Numerical Function Optimization. In Proceedings of the 2009 International Conference of Soft Computing and Pattern Recognition, Malacca, Malaysia, 4–7 December 2009. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Front. Mech. Eng 2023, 8, 1126450. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 2019, 82, 148–174. [Google Scholar] [CrossRef]
- Tamura, K.; Yasuda, K. The spiral optimization algorithm: Convergence conditions and settings. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 360–375. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Solomon, S. Climate Change 2007: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. Atmos. 2008, 113, D06104. [Google Scholar] [CrossRef]
Input | Output | |||||||
---|---|---|---|---|---|---|---|---|
P(KW) | Tm/TFL | TST/TFL | IST/IFL | (rpm) | Cage Number | Reactance (ohms) Xm | ||
8 | 0.74 | 2.5 | 2.1 | 4.6 | 960 | 0.86 | 1 | 1.056 |
11 | 0.9 | 3.1 | 2.2 | 7 | 2945 | 0.91 | 1 | 2.5856 |
15 | 0.92 | 2.9 | 2.2 | 6.6 | 2910 | 0.904 | 1 | 3.1806 |
19 | 0.84 | 3.2 | 2.7 | 6.9 | 1460 | 0.905 | 1 | 1.6808 |
22 | 0.77 | 2.9 | 2.8 | 5.5 | 975 | 0.908 | 1 | 1.2526 |
30 | 0.88 | 2.7 | 2.3 | 6 | 2940 | 0.91 | 1 | 2.3497 |
37 | 0.86 | 3.1 | 2.5 | 7 | 1475 | 0.929 | 1 | 1.9975 |
45 | 0.81 | 2.3 | 2.1 | 6 | 740 | 0.92 | 1 | 1.6728 |
55 | 0.82 | 2.4 | 2.2 | 6 | 738 | 0.931 | 1 | 1.7594 |
75 | 0.86 | 2.4 | 2.1 | 6.3 | 1482 | 0.947 | 1 | 2.3228 |
90 | 0.86 | 2.7 | 2.2 | 6.8 | 1480 | 0.94 | 1 | 2.1573 |
110 | 0.86 | 3 | 2 | 7.6 | 2982 | 0.955 | 1 | 2.1294 |
132 | 0.86 | 3 | 2.7 | 7.2 | 1486 | 0.955 | 1 | 2.1209 |
160 | 0.86 | 2.7 | 2.4 | 7 | 1487 | 0.96 | 1 | 2.2378 |
200 | 0.87 | 2.7 | 2.7 | 7 | 1488 | 0.962 | 1 | 2.4082 |
250 | 0.8 | 3 | 2.2 | 7.3 | 991 | 0.91 | 1 | 1.4423 |
315 | 0.84 | 3 | 2 | 7.3 | 991 | 0.962 | 1 | 1.9026 |
355 | 0.87 | 2.7 | 2.2 | 6.8 | 1486 | 0.967 | 1 | 2.4236 |
400 | 0.82 | 2.6 | 2.1 | 6.5 | 742 | 0.962 | 1 | 1.7943 |
500 | 0.87 | 2.7 | 2.3 | 6.5 | 992 | 0.966 | 1 | 2.3801 |
8 | 0.74 | 2.5 | 2.1 | 4.6 | 960 | 0.86 | 2 | 1.0415 |
11 | 0.9 | 3.1 | 2.2 | 7 | 2945 | 0.91 | 2 | 2.5947 |
15 | 0.92 | 2.9 | 2.2 | 6.6 | 2910 | 0.904 | 2 | 3.0787 |
19 | 0.84 | 3.2 | 2.7 | 6.9 | 1460 | 0.905 | 2 | 1.6559 |
22 | 0.77 | 2.9 | 2.8 | 5.5 | 975 | 0.908 | 2 | 1.2665 |
30 | 0.88 | 2.7 | 2.3 | 6 | 2940 | 0.91 | 2 | 2.3576 |
37 | 0.86 | 3.1 | 2.5 | 7 | 1475 | 0.929 | 2 | 2.0088 |
45 | 0.81 | 2.3 | 2.1 | 6 | 740 | 0.92 | 2 | 1.7001 |
55 | 0.82 | 2.4 | 2.2 | 6 | 738 | 0.931 | 2 | 1.7804 |
75 | 0.86 | 2.4 | 2.1 | 6.3 | 1482 | 0.947 | 2 | 2.3514 |
90 | 0.86 | 2.7 | 2.2 | 6.8 | 1480 | 0.94 | 2 | 2.1727 |
110 | 0.86 | 3 | 2 | 7.6 | 2982 | 0.955 | 2 | 2.1472 |
132 | 0.86 | 3 | 2.7 | 7.2 | 1486 | 0.955 | 2 | 2.1405 |
160 | 0.86 | 2.7 | 2.4 | 7 | 1487 | 0.96 | 2 | 2.261 |
200 | 0.87 | 2.7 | 2.7 | 7 | 1488 | 0.962 | 2 | 2.4351 |
250 | 0.8 | 3 | 2.2 | 7.3 | 991 | 0.91 | 2 | 1.4611 |
315 | 0.84 | 3 | 2 | 7.3 | 991 | 0.962 | 2 | 1.9158 |
355 | 0.87 | 2.7 | 2.2 | 6.8 | 1486 | 0.967 | 2 | 2.442 |
400 | 0.82 | 2.6 | 2.1 | 6.5 | 742 | 0.962 | 2 | 1.8144 |
500 | 0.87 | 2.7 | 2.3 | 6.5 | 992 | 0.966 | 2 | 2.4021 |
Neurons’ Number | Network Results | Scoring | Total Score | Rank | ||||
---|---|---|---|---|---|---|---|---|
RMSE Total | RMSE Train | RMSE Test | RMSE Total | RMSE Train | RMSE Test | |||
1 | 0.042 | 0.159 | 0.094 | 5 | 3 | 4 | 12 | 7 |
2 | 0.070 | 0.087 | 0.076 | 3 | 5 | 5 | 13 | 6 |
3 | 0.026 | 0.031 | 0.027 | 7 | 10 | 9 | 26 | 2 |
4 | 0.023 | 0.042 | 0.030 | 8 | 8 | 7 | 23 | 4 |
5 | 0.022 | 0.042 | 0.029 | 9 | 7 | 8 | 24 | 3 |
6 | 0.028 | 0.189 | 0.106 | 6 | 2 | 3 | 11 | 8 |
7 | 0.002 | 0.034 | 0.019 | 10 | 9 | 10 | 29 | 1 |
8 | 0.413 | 0.557 | 0.461 | 1 | 1 | 1 | 3 | 10 |
9 | 0.085 | 0.158 | 0.112 | 2 | 4 | 2 | 8 | 9 |
10 | 0.055 | 0.054 | 0.055 | 4 | 6 | 6 | 16 | 5 |
Swarm Size | Training Dataset | Testing Dataset | Scoring | Total Score | Rank | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Training | Testing | |||||
50 | 23.63823 | 0.9951 | 24.11876 | 0.99432 | 6 | 6 | 5 | 5 | 22 | 5 |
100 | 25.11094 | 0.9944 | 26.27564 | 0.99326 | 1 | 1 | 1 | 1 | 4 | 10 |
150 | 22.22501 | 0.9956 | 23.80023 | 0.99447 | 8 | 8 | 7 | 7 | 30 | 3 |
200 | 23.84449 | 0.9950 | 24.57425 | 0.99411 | 5 | 5 | 4 | 4 | 18 | 6 |
250 | 24.1811 | 0.9948 | 24.76236 | 0.99402 | 3 | 3 | 3 | 3 | 12 | 8 |
300 | 23.33629 | 0.9952 | 23.65243 | 0.99454 | 7 | 7 | 8 | 8 | 30 | 3 |
350 | 23.90106 | 0.9949 | 25.61831 | 0.99359 | 4 | 4 | 2 | 2 | 12 | 8 |
400 | 20.80626 | 0.9962 | 20.31492 | 0.99598 | 10 | 10 | 10 | 10 | 40 | 1 |
450 | 24.51922 | 0.9947 | 24.03486 | 0.99436 | 2 | 2 | 6 | 6 | 16 | 7 |
500 | 22.14183 | 0.9957 | 22.65417 | 0.99499 | 9 | 9 | 9 | 9 | 36 | 2 |
Swarm Size | Training Dataset | Testing Dataset | Scoring | Total Score | Rank | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Training | Testing | |||||
50 | 34.08308 | 0.9897 | 34.06019 | 0.98865 | 4 | 4 | 4 | 4 | 16 | 7 |
100 | 31.44115 | 0.9912 | 29.71232 | 0.99137 | 5 | 5 | 7 | 7 | 24 | 5 |
150 | 28.26581 | 0.9929 | 30.61575 | 0.99084 | 8 | 8 | 6 | 6 | 28 | 4 |
200 | 31.10083 | 0.9914 | 30.84898 | 0.9907 | 6 | 6 | 5 | 5 | 22 | 6 |
250 | 27.41033 | 0.9933 | 27.70597 | 0.9925 | 9 | 9 | 8 | 8 | 34 | 2 |
300 | 37.17817 | 0.9877 | 38.33216 | 0.9856 | 1 | 1 | 3 | 3 | 8 | 8 |
350 | 26.6653 | 0.9937 | 25.64152 | 0.99358 | 10 | 10 | 10 | 10 | 40 | 1 |
400 | 36.48612 | 0.9882 | 38.98085 | 0.9851 | 2 | 2 | 2 | 2 | 8 | 8 |
450 | 35.18528 | 0.9890 | 40.22532 | 0.98413 | 3 | 3 | 1 | 1 | 8 | 8 |
500 | 28.3602 | 0.9929 | 27.34985 | 0.99269 | 7 | 7 | 9 | 9 | 32 | 3 |
Swarm Size | Training Dataset | Testing Dataset | Scoring | Total Score | Rank | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Training | Testing | |||||
50 | 49.45456 | 0.9782 | 46.48186 | 0.97875 | 1 | 1 | 2 | 2 | 6 | 9 |
100 | 47.41478 | 0.9799 | 46.34932 | 0.97887 | 4 | 4 | 3 | 3 | 14 | 7 |
150 | 47.87484 | 0.9796 | 44.38386 | 0.98064 | 3 | 3 | 4 | 4 | 14 | 7 |
200 | 40.9752 | 0.9851 | 38.16262 | 0.98573 | 9 | 9 | 10 | 10 | 38 | 1 |
250 | 48.13358 | 0.9793 | 48.15308 | 0.97718 | 2 | 2 | 1 | 1 | 6 | 9 |
300 | 46.59209 | 0.9806 | 39.55079 | 0.98466 | 5 | 5 | 8 | 8 | 26 | 4 |
350 | 45.74193 | 0.9813 | 43.03009 | 0.98182 | 7 | 7 | 5 | 5 | 24 | 5 |
400 | 39.97074 | 0.9858 | 38.31342 | 0.98561 | 10 | 10 | 9 | 9 | 38 | 1 |
450 | 46.52896 | 0.9807 | 42.55685 | 0.98222 | 6 | 6 | 6 | 6 | 24 | 5 |
500 | 42.47182 | 0.9839 | 41.92675 | 0.98275 | 8 | 8 | 7 | 7 | 30 | 3 |
Swarm Size | Training Dataset | Testing Dataset | Scoring | Total Score | Rank | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Training | Testing | |||||
50 | 34.47294 | 0.9895 | 35.40373 | 0.98773 | 1 | 1 | 1 | 1 | 4 | 10 |
100 | 30.54225 | 0.9917 | 30.22369 | 0.99107 | 4 | 4 | 6 | 6 | 20 | 6 |
150 | 31.50901 | 0.9912 | 31.1856 | 0.99049 | 3 | 3 | 5 | 5 | 16 | 8 |
200 | 28.6116 | 0.9927 | 31.57711 | 0.99025 | 8 | 8 | 4 | 4 | 24 | 5 |
250 | 30.26023 | 0.9919 | 28.95705 | 0.99181 | 5 | 5 | 9 | 9 | 28 | 3 |
300 | 29.91963 | 0.9921 | 29.47933 | 0.99151 | 7 | 7 | 7 | 7 | 28 | 3 |
350 | 31.53647 | 0.9912 | 34.09141 | 0.98863 | 2 | 2 | 2 | 2 | 8 | 9 |
400 | 28.26144 | 0.9929 | 29.3445 | 0.99159 | 10 | 10 | 8 | 8 | 36 | 2 |
450 | 28.3406 | 0.9929 | 27.67516 | 0.99252 | 9 | 9 | 10 | 10 | 38 | 1 |
500 | 30.24985 | 0.9919 | 31.94492 | 0.99002 | 6 | 5 | 3 | 3 | 17 | 7 |
Swarm Size | Training Dataset | Testing Dataset | Scoring | Total Score | Rank | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Training | Testing | |||||
50 | 80.24177 | 0.9414 | 82.22691 | 0.93189 | 5 | 5 | 4 | 4 | 18 | 6 |
100 | 99.9979 | 0.9074 | 93.41085 | 0.91114 | 2 | 2 | 2 | 2 | 8 | 9 |
150 | 60.22237 | 0.9674 | 61.38316 | 0.96264 | 9 | 9 | 9 | 9 | 36 | 2 |
200 | 75.74714 | 0.9480 | 74.62977 | 0.94425 | 6 | 6 | 6 | 6 | 24 | 5 |
250 | 85.32182 | 0.9335 | 81.59779 | 0.93296 | 4 | 4 | 5 | 5 | 18 | 6 |
300 | 101.28839 | 0.9049 | 105.2951 | 0.88556 | 1 | 1 | 1 | 1 | 4 | 10 |
350 | 71.63692 | 0.9536 | 71.28501 | 0.94926 | 7 | 7 | 7 | 7 | 28 | 4 |
400 | 70.02715 | 0.9557 | 70.14969 | 0.95091 | 8 | 8 | 8 | 8 | 32 | 3 |
450 | 85.97935 | 0.9324 | 86.26555 | 0.92475 | 3 | 3 | 3 | 3 | 12 | 8 |
500 | 58.72181 | 0.9691 | 55.03676 | 0.97008 | 10 | 10 | 10 | 10 | 40 | 1 |
Swarm Size | Training Dataset | Testing Dataset | Scoring | Total Score | Rank | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Training | Testing | |||||
50 | 32.77473 | 0.9905 | 30.24719 | 0.99106 | 5 | 5 | 5 | 5 | 20 | 6 |
100 | 33.41437 | 0.9901 | 34.52783 | 0.98833 | 3 | 3 | 3 | 3 | 12 | 8 |
150 | 26.3452 | 0.9939 | 25.40095 | 0.9937 | 8 | 8 | 8 | 8 | 32 | 3 |
200 | 33.0703 | 0.9903 | 33.86622 | 0.98878 | 4 | 4 | 4 | 4 | 16 | 7 |
250 | 36.46323 | 0.9882 | 36.54035 | 0.98692 | 2 | 2 | 2 | 2 | 8 | 9 |
300 | 27.32019 | 0.9934 | 26.66101 | 0.99306 | 7 | 7 | 6 | 6 | 26 | 4 |
350 | 37.16543 | 0.9877 | 37.65716 | 0.9861 | 1 | 1 | 1 | 1 | 4 | 10 |
400 | 25.61274 | 0.9942 | 24.79169 | 0.994 | 9 | 9 | 10 | 10 | 38 | 1 |
450 | 28.03065 | 0.9930 | 26.49107 | 0.99315 | 6 | 6 | 7 | 7 | 26 | 4 |
500 | 24.80362 | 0.9946 | 24.89665 | 0.99395 | 10 | 10 | 9 | 9 | 38 | 1 |
Method | Swarm Size | Training Dataset | Testing Dataset | Scoring | Total Score | Rank | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | Training | Testing | ||||||
MVO-MLP | 400 | 20.80626 | 0.9962 | 20.31492 | 0.99598 | 6 | 6 | 6 | 6 | 24 | 1 |
COA-MLP | 350 | 26.6653 | 0.9937 | 25.64152 | 0.99358 | 4 | 4 | 4 | 4 | 16 | 3 |
HBO-MLP | 400 | 39.97074 | 0.9858 | 38.31342 | 0.98561 | 2 | 2 | 2 | 2 | 8 | 5 |
LCA-MLP | 450 | 28.3406 | 0.9929 | 27.67516 | 0.99252 | 3 | 3 | 3 | 3 | 12 | 4 |
OOA-MLP | 500 | 58.72181 | 0.9691 | 55.03676 | 0.97008 | 1 | 1 | 1 | 1 | 4 | 6 |
STOA-MLP | 500 | 24.80362 | 0.9946 | 24.89665 | 0.99395 | 5 | 5 | 5 | 5 | 20 | 2 |
Input | Output | |||||||
---|---|---|---|---|---|---|---|---|
P(KW) | Cos@(FL) | Tm/TFL | TST/TFL | IST/IFL | (rpm) | Cage Number | Reactance (ohms) Xm | |
Wi1 | Wi2 | Wi3 | Wi4 | Wi5 | Wi6 | Wi7 | Wi8 |
i | Wi1 | Wi2 | Wi3 | Wi4 | Wi5 | Wi6 | Wi7 | Wi8 | bi |
---|---|---|---|---|---|---|---|---|---|
1 | −0.2238 | 0.7354 | −0.9892 | 0.5626 | −0.4626 | −0.3124 | 1.2256 | 0.2762 | 1.4507 |
2 | −0.0923 | 1.0071 | 0.4144 | −0.2165 | 0.6689 | −0.9779 | 0.1880 | −0.6596 | −1.0351 |
3 | 0.3254 | 1.5829 | −0.5839 | 0.3391 | −0.7296 | 0.1982 | 0.5122 | 0.1488 | −0.7934 |
4 | 0.1890 | −0.7108 | −0.8677 | 0.1120 | −0.8135 | −1.0654 | 0.5661 | −1.0478 | 0.0897 |
5 | 0.7587 | −0.1117 | −0.2094 | 0.3578 | −0.8805 | −0.8035 | −0.4683 | −0.2130 | 0.8239 |
6 | −0.2406 | −0.1814 | −0.4286 | 1.2509 | −1.0440 | 0.6871 | −0.3261 | 0.3638 | −1.3322 |
7 | 0.2390 | −0.3724 | 0.1786 | 0.9425 | −0.5653 | 0.9022 | −0.1640 | −0.1949 | −2.1776 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gör, H. Feasibility of Six Metaheuristic Solutions for Estimating Induction Motor Reactance. Mathematics 2024, 12, 483. https://doi.org/10.3390/math12030483
Gör H. Feasibility of Six Metaheuristic Solutions for Estimating Induction Motor Reactance. Mathematics. 2024; 12(3):483. https://doi.org/10.3390/math12030483
Chicago/Turabian StyleGör, Halil. 2024. "Feasibility of Six Metaheuristic Solutions for Estimating Induction Motor Reactance" Mathematics 12, no. 3: 483. https://doi.org/10.3390/math12030483
APA StyleGör, H. (2024). Feasibility of Six Metaheuristic Solutions for Estimating Induction Motor Reactance. Mathematics, 12(3), 483. https://doi.org/10.3390/math12030483