Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization
Abstract
:1. Introduction
2. Problem Formulation
3. Branch-and-Bound Algorithm
3.1. Dominance Properties
3.2. Lower Bound
3.3. Upper Bound
Algorithm 1: |
(Step 1). Arrange the jobs by the non-decreasing order of , i.e., (call the obtained schedule ).
(Step 2). Arrange the jobs by the non-decreasing order of , i.e., (call the obtained schedule ). (Step 3). Arrange the jobs by the non-decreasing order of , i.e., (call the obtained schedule ). (Step 4). Arrange the jobs by the non-increasing order of , i.e., (call the obtained schedule ). (Step 5). Find the best schedule from schedules , , and . |
3.4. Branch-and-Bound Algorithm
Algorithm 2: |
Step 1. Use Algorithm 1 to obtain an initial solution (i.e., ). Step 2. In the th level node, the first positions are occupied by specific jobs. Select one of the remaining jobs for the node at level . Step 3. First apply Propositions 1–3, to eliminate the dominated partial schedules. Step 4. Calculate the for of the node. If the lower bound for an unfathomed partial schedule of jobs is larger than or equal to the value of of the initial solution, eliminate the node and all the nodes following it in the branch. Calculate the value of the completed schedule, if it is less than the initial solution, replace it as the new solution; otherwise, eliminate it. Step 5. Continue to search all the nodes, and the remaining initial solution is an optimal schedule. |
4. Meta-Heuristic Algorithms
4.1. Tabu Search
Algorithm 3: |
Step 1. Let the tabu list be empty and the iteration number be zero. Step 2. Set the initial sequence of the algorithm, calculate its objective function and set the current schedule as the best solution . Step 3. Search the associated neighborhood of the current schedule and resolve if there is a schedule with the smallest objective function in associated neighborhoods and it is not in the tabu list. Step 4. If is better than , then let . Update the tabu list and the iteration number. Step 5. If there is not a schedule in associated neighborhoods but it is not in the tabu list or the maximum number of iterations is reached, then output the local optimal schedule and objective function value . Otherwise, update the tabu list and go to Step 3. |
4.2. Algorithm
Algorithm 4: |
(Step 1). Arrange all the jobs by Algorithm 1. (Step 2). Set . Select the first two jobs from the sorted list (by Step 1) and select the best of the two possible schedules. Do not change the relative positions of these two jobs with respect to each other in the remaining steps of the algorithm. Set . (Step 3). Pick the job in the th position of the list generated in Step 1 and find the best schedule by placing it at all possible positions in the partial sequence found in the previous step, without changing the relative positions to each other of the already assigned jobs. The number of enumerations at this step is equal to . (Step 4). If , STOP; otherwise set and go to Step 3. |
4.3. Simulated Annealing
Algorithm 5: |
Step 1. Initial schedule can be obtained by Algorithm 1. Step 2. Pairwise interchange (PI) neighborhood generation method will be used. Step 3. When a new schedule is generated (by Step 2), it is accepted if its objective function value (i.e., ) is smaller than that of the original schedule; otherwise, it is accepted with some probability that decreases as the process evolves. The probability of acceptance is generated from an exponential distribution, where ψ is a control parameter and is the change in the objective function value, ψ in the kth iteration is and η is an experimental constant. After preliminary trials, was used in our experiments. If the objective function value increases as a result of a random pairwise interchange, the new schedule is accepted when , where ς is randomly sampled from the uniform distribution . Step 4. Stopping condition: 1000n iterations. |
4.4. A Mixed Integer Programming (MIP) Model
5. Computational Results
- C++ version: Visual studio 2019, the max memory allowed was restricted to 64 G, for the , , , and algorithms.
- Testing computer: One desktop workstation with one AMD R7-4700H CPU (2.9–4.2 GHz, 8 cores, 16 threads) and 128 G of physical memory.
- is uniformly distributed over [0.05, 0.1] (i.e., ), [0.1, 0.15] (i.e., ) and [0.05, 0.15] (i.e., );
- is uniform integers distributed over [1, 50] (i.e., ), [50, 100] (i.e., ) and [1, 100] (i.e., );
- is uniform integers distributed over [1, 10] (i.e., );
- n = 15, 20, 25, 30, 35, 40.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gawiejnowicz, S.; Kurc, W.; Pankowska, L. Pareto and scalar bicriterion scheduling of deteriorating jobs. Comput. Oper. Res. 2006, 33, 746–767. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, M.; Zheng, Z. Patient scheduling with periodic deteriorating maintenance on single medical device. Comput. Oper. Res. 2014, 49, 107–116. [Google Scholar] [CrossRef]
- Mosheiov, G. Scheduling jobs under simple linear deterioration. Comput. Oper. Res. 1994, 21, 653–659. [Google Scholar] [CrossRef]
- Gawiejnowicz, S. Scheduling deteriorating jobs subject to job or machine availability constraints. Eur. J. Oper. Res. 2007, 180, 472–478. [Google Scholar] [CrossRef]
- Oron, D. Single machine scheduling with simple linear deterioration to minimize total absolute deviation of completion times. Comput. Oper. Res. 2008, 35, 2071–2078. [Google Scholar] [CrossRef]
- Lee, W.-C.; Wang, W.J.; Shiau, Y.R.; Wu, C.-C. A single-machine scheduling problem with two-agent and deteriorating jobs. Appl. Math. Model. 2010, 34, 3098–3107. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wei, C.M.; Wu, Y.B. Single machine two-agent scheduling with deteriorating jobs. Asia-Pac. J. Oper. Res. 2016, 33, 1650034. [Google Scholar] [CrossRef]
- Wu, C.-C.; Wu, W.-H.; Wu, W.-H.; Hsu, P.-H.; Yin, Y.; Xu, J. A single-machine scheduling with a truncated linear deterioration and ready times. Inf. Sci. 2014, 256, 109–125. [Google Scholar] [CrossRef]
- Yin, N.; Kang, L. Minimizing makespan in permutation flow shop scheduling with proportional deterioration. Asia-Pac. J. Oper. Res. 2015, 32, 1550050. [Google Scholar] [CrossRef]
- Pei, J.; Liu, X.B.; Pardalos, P.M.; Fan, W.J.; Yang, S.L. Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Ann. Oper. Res. 2017, 249, 175–195. [Google Scholar] [CrossRef]
- Jafari, A.A.; Lotfi, M.M. Single-machine scheduling to minimize the maximum tardiness under piecewise linear deteriorating jobs. Sci. Iran. 2018, 25, 370–385. [Google Scholar] [CrossRef]
- Miao, C.X.; Zhang, Y.Z. Scheduling with step-deteriorating jobs to minimize the makespan. J. Ind. Manag. Optim. 2019, 15, 1955–1964. [Google Scholar] [CrossRef]
- Huang, X. Bicriterion scheduling with group technology and deterioration effect. J. Appl. Math. Comput. 2019, 60, 455–464. [Google Scholar] [CrossRef]
- Liu, F.; Yang, J.; Lu, Y.-Y. Solution algorithms for single-machine group scheduling with ready times and deteriorating jobs. Eng. Optim. 2019, 51, 862–874. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N. Single-machine scheduling with deteriorating effects and machine maintenance. Int. J. Prod. Res. 2019, 57, 3186–3199. [Google Scholar] [CrossRef]
- Cheng, T.C.E.; Kravchenko, S.-A.; Lin, B.M.T. Scheduling step-deteriorating jobs to minimize the total completion time. Comput. Ind. Eng. 2020, 144, 106329. [Google Scholar] [CrossRef]
- Li, D.-W.; Lu, X.-W. Parallel-batch scheduling with deterioration and rejection on a single machine. Appl. Math. J. Chin. Univ. 2020, 35, 141–156. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.-C.; Lin, W.-C.; Wu, C.-C. Parallel-machine scheduling with linear deteriorating jobs and preventive maintenance activities under a potential machine disruption. Comput. Ind. Eng. 2020, 145, 106482. [Google Scholar] [CrossRef]
- Huang, X.; Yin, N.; Liu, W.-W.; Wang, J.-B. Common due window assignment scheduling with proportional linear deterioration effects. Asia-Pac. J. Oper. Res. 2020, 37, 1950031. [Google Scholar] [CrossRef]
- He, H.; Hu, Y.; Liu, W.-W. Scheduling with deteriorating effect and maintenance activities under parallel processors. Eng. Optim. 2021, 53, 2070–2087. [Google Scholar] [CrossRef]
- Qian, J.; Han, H. The due date assignment scheduling problem with the deteriorating jobs and delivery time. J. Appl. Math. Comput. 2022, 67, 2173–2186. [Google Scholar] [CrossRef]
- Qian, J.; Zhan, Y. The due window assignment problems with deteriorating job and delivery time. Mathematics 2022, 10, 1672. [Google Scholar] [CrossRef]
- Miao, C.; Kong, F.; Zou, J.; Ma, R.; Huo, Y. Parallel-machine scheduling with step-deteriorating jobs to minimize the total (weighted) completion time. Asia-Pac. J. Oper. Res. 2023, 40, 2240011. [Google Scholar] [CrossRef]
- Jia, X.; Lv, D.-Y.; Hu, Y.; Wang, J.-B.; Wang, Z.; Wang, E. Slack due-window assignment scheduling problem with deterioration effects and a deteriorating maintenance activity. Asia-Pac. J. Oper. Res. 2022, 39, 2250005. [Google Scholar] [CrossRef]
- Sun, X.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]
- Miao, C.; Song, J.; Zhang, Y. Single-machine time-dependent scheduling with proportional and delivery times. Asia-Pac. J. Oper. Res. 2023, 40, 2240011. [Google Scholar] [CrossRef]
- Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. Asia-Pac. J. Oper. Res. 2023, 2350026. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Geng, X.-N.; Xue, J.; Wang, J.-B. Single machine slack due window assignment and deteriorating jobs. J. Ind. Manag. Optim. 2024, 20, 1593–1614. [Google Scholar] [CrossRef]
- Shabtay, D.; Mor, B. Exact algorithms and approximation schemes for proportionate flow shop scheduling with step-deteriorating processing times. J. Sched. 2022. [Google Scholar] [CrossRef]
- Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Gawiejnowicz, S. A review of four decades of time-dependent scheduling: Main results, new topics, and open problems. J. Sched. 2020, 23, 3–47. [Google Scholar] [CrossRef]
- Miao, C. Complexity of scheduling with proportional deterioration and release dates. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1337–1342. [Google Scholar] [CrossRef]
- Zhong, X.L.; Pan, Z.M.; Jiang, D.K. Scheduling with release times and rejection on two parallel machines. J. Comb. Optim. 2017, 33, 934–944. [Google Scholar] [CrossRef]
- Bai, D.Y.; Xue, H.; Wang, L.; Wu, C.-C.; Lin, W.-C.; Abdulkadir, D.H. Effective algorithms for single-machine learning-effect scheduling to minimize completion-time-based criteria with release dates. Expert Syst. Appl. 2020, 156, 113445. [Google Scholar] [CrossRef]
- Qian, J.; Lin, H.X.; Kong, Y.F.; Wang, Y.S. Tri-criteria single machine scheduling model with release times and learning factor. Appl. Math. Comput. 2020, 387, 124543. [Google Scholar] [CrossRef]
- Rau, G. Minimizing a function of permutations of n integers. Oper. Res. 1971, 19, 237–240. [Google Scholar] [CrossRef]
- Kelly, F.-P. A remark on search and sequencing problems. Math. Oper. Res. 1982, 7, 154–157. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, J.E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Lai, K.; Hsu, P.-H.; Ting, P.-H.; Wu, C.-C. A truncated sum of processing-times-based learning model for a two-machine flowshop scheduling problem. Hum. Factors Ergon. Manuf. Serv. Ind. 2014, 24, 152–160. [Google Scholar] [CrossRef]
- Liu, S.; Wu, W.-H.; Kang, C.-C.; Lin, W.-C.; Cheng, Z. A single-machine two-agent scheduling problem by a branch-and-bound and three simulated annealing algorithms. Discret. Dyn. Nat. Soc. 2015, 2015, 681854. [Google Scholar] [CrossRef]
- Wu, C.-C.; Bai, D.; Zhang, X.; Cheng, S.-R.; Lin, J.-C.; Wu, Z.-L.; Lin, W.-C. A robust customer order scheduling problem along with scenario-dependent component processing times and due dates. J. Manuf. Syst. 2021, 58, 291–305. [Google Scholar] [CrossRef]
- Wu, C.-C.; Bai, D.; Chen, J.-H.; Lin, W.-C.; Xing, L.; Lin, J.-C.; Cheng, S.-R. Everal variants of simulated annealing hyper-heuristic for a single-machine scheduling with two-scenario-based dependent processing times. Swarm Evol. Comput. 2021, 60, 100765. [Google Scholar] [CrossRef]
- Yu, Y.; Pan, Q.; Pang, X.; Tang, X. An attribution feature-based memetic algorithm for hybrid flowshop scheduling problem with operation skipping. IEEE Trans. Autom. Sci. Eng. 2024. [Google Scholar] [CrossRef]
Problem | Complexity or Algorithms | Reference |
---|---|---|
Qian and Han [21] | ||
Qian and Han [21] | ||
Qian and Han [21] | ||
Qian and Zhan [22] | ||
Qian and Zhan [22] | ||
Mosheiov [3] | ||
, | Mosheiov [3] | |
, | Mosheiov [3] | |
, | Mosheiov [3] | |
open problem | Oron [5] | |
Gawiejnowicz [30] (Theorem 7.93) | ||
NP-hard | Miao [32] | |
, | Miao [32] | |
BB and Meta-heuristic algorithms | This paper |
BB | UB | TS | NEH | SA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
122.60 | 564.00 | 4.85 | 9.00 | 5741.75 | 54,925.00 | 2.75 | 8.00 | 6.50 | 11.00 | ||
15 | 17.10 | 36.00 | 6.30 | 11.00 | 3667.05 | 64,462.00 | 5.90 | 73.00 | 8.90 | 16.00 | |
75.70 | 359.00 | 5.70 | 9.00 | 5987.75 | 61,622.00 | 2.20 | 5.00 | 8.20 | 26.00 | ||
29,084.40 | 151,879.00 | 4.40 | 6.00 | 25,536.40 | 165,107.00 | 3.70 | 24.00 | 14.35 | 22.00 | ||
20 | 245.60 | 641.00 | 6.40 | 9.00 | 29,178.70 | 212,358.00 | 3.35 | 5.00 | 15.65 | 20.00 | |
27,701.60 | 199,894.00 | 5.00 | 11.00 | 19,955.30 | 192,863.00 | 3.10 | 5.00 | 18.30 | 78.00 | ||
512,311.00 | 3,726,670.00 | 4.00 | 9.00 | 15,949.60 | 289,186.00 | 4.60 | 22.00 | 16.55 | 23.00 | ||
25 | 1990.10 | 5876.00 | 5.25 | 9.00 | 40,320.75 | 433,996.00 | 5.30 | 16.00 | 21.20 | 31.00 | |
122,106.00 | 106,339.00 | 4.05 | 6.00 | 67,496.10 | 339,880.00 | 3.75 | 6.00 | 19.40 | 28.00 | ||
174,832.00 | 1,329,940.00 | 4.70 | 15.00 | 145,316.60 | 749,768.00 | 5.15 | 9.00 | 21.70 | 40.00 | ||
30 | 9390.05 | 17,815.00 | 4.25 | 10.00 | 59,158.80 | 567,654.00 | 7.60 | 50.00 | 24.30 | 30.00 | |
6,343,906.00 | 47,881,400.00 | 3.95 | 10.00 | 148,253.20 | 722,566.00 | 5.50 | 10.00 | 26.6 | 66.00 | ||
3,148,041.85 | 9,034,400.00 | 8.85 | 71.00 | 117,052.00 | 1,359,553.00 | 6.60 | 21.00 | 28.15 | 46.00 | ||
35 | 44,630.25 | 70,439.00 | 2.35 | 4.00 | 57,802.85 | 1,054,277.00 | 6.00 | 16.00 | 33.00 | 41.00 | |
4,296,541.70 | 30,627,000.00 | 3.40 | 7.00 | 216,026.10 | 1,075,473.00 | 4.80 | 17.00 | 22.80 | 27.00 | ||
2,150,283.40 | 10,695,000.00 | 2.50 | 8.00 | 89,874.20 | 850,713.00 | 5.50 | 14.00 | 29.20 | 49.00 | ||
40 | 102,262.90 | 159,458.00 | 3.25 | 7.00 | 92,418.60 | 896,981.00 | 5.90 | 11.00 | 23.55 | 38.00 | |
9,961,003.10 | 39,870,200.00 | 3.60 | 13.00 | 58,957.00 | 711,500.00 | 4.90 | 8.00 | 34.40 | 47.00 |
BB | UB | TS | NEH | SA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
102.85 | 451.00 | 1.20 | 2.00 | 10,484.90 | 67,690.00 | 1.30 | 3.00 | 7.30 | 9.00 | ||
15 | 23.00 | 47.00 | 1.35 | 3.00 | 7173.15 | 68,005.00 | 1.60 | 3.00 | 7.15 | 9.00 | |
243.90 | 3067.00 | 1.45 | 3.00 | 430.75 | 450.00 | 1.30 | 4.00 | 7.30 | 11.00 | ||
14,573.35 | 168,203.00 | 1.25 | 2.00 | 8838.95 | 160,111.00 | 1.75 | 2.00 | 10.15 | 11.00 | ||
20 | 237.85 | 509.00 | 1.35 | 3.00 | 28,075.60 | 215,786.00 | 1.75 | 2.00 | 10.70 | 18.00 | |
3487.35 | 19,283.00 | 2.10 | 5.00 | 43,418.90 | 215,419.00 | 1.95 | 3.00 | 13.65 | 17.00 | ||
193,834.35 | 3,177,120.00 | 1.50 | 4.00 | 22,294.45 | 414,487.00 | 2.20 | 3.00 | 14.65 | 23.00 | ||
25 | 1450.20 | 2885.00 | 1.45 | 3.00 | 32,890.65 | 315,447.00 | 2.10 | 3.00 | 14.15 | 15.00 | |
17,100.45 | 192,282.00 | 1.25 | 3.00 | 17,350.00 | 315,937.00 | 2.00 | 3.00 | 14.25 | 17.00 | ||
87,182.50 | 536,278.00 | 1.60 | 3.00 | 56,730.20 | 545,618.00 | 2.95 | 4.00 | 18.40 | 21.00 | ||
30 | 12,805.85 | 53,990.00 | 1.85 | 4.00 | 61,176.00 | 550,356.00 | 3.20 | 5.00 | 21.35 | 32.00 | |
201,922.75 | 1,906,000.00 | 1.60 | 4.00 | 29,775.95 | 543,595.00 | 2.55 | 4.00 | 18.35 | 20.00 | ||
1,946,500.25 | 26,744,000.00 | 2.35 | 5.00 | 78,636.70 | 1,459,851.00 | 5.15 | 13.00 | 37.25 | 47.00 | ||
35 | 63,408.45 | 108,301.00 | 2.40 | 5.00 | 126,142.50 | 1,208,994.00 | 4.20 | 7.00 | 35.50 | 47.00 | |
248,386.05 | 2,109,800.00 | 1.45 | 3.00 | 175,928.10 | 874,246.00 | 3.60 | 5.00 | 26.10 | 39.00 | ||
1,773,385.10 | 11,064,300.00 | 1.85 | 3.00 | 117,793.65 | 2,193,161.00 | 5.35 | 9.00 | 43.65 | 65.00 | ||
40 | 206,306.40 | 406,824.00 | 3.45 | 16.00 | 8535.20 | 10,565.00 | 5.35 | 6.00 | 43.55 | 69.00 | |
1,335,705.85 | 8,545,740.00 | 3.30 | 14.00 | 308,533.45 | 2,184,809.00 | 5.00 | 7.00 | 41.70 | 53.00 |
BB | UB | TS | NEH | SA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
399.25 | 4462.00 | 2.75 | 5.00 | 9524.20 | 90,275.00 | 1.25 | 3.00 | 10.35 | 14.00 | ||
15 | 25.00 | 43.00 | 3.25 | 10.00 | 9380.70 | 88,716.00 | 1.20 | 2.00 | 10.10 | 13.00 | |
185.55 | 833.00 | 1.25 | 2.00 | 13,540.00 | 87,656.00 | 1.05 | 2.00 | 8.70 | 14.00 | ||
28,036.50 | 205,993.00 | 1.05 | 2.00 | 1035.60 | 1089.00 | 1.05 | 2.00 | 11.75 | 12.00 | ||
20 | 391.70 | 817.00 | 1.05 | 2.00 | 11,391.85 | 208,018.00 | 1.05 | 2.00 | 12.45 | 19.00 | |
473,980.00 | 558,400.00 | 3.85 | 5.00 | 20,517.15 | 376,660.00 | 3.15 | 5.00 | 16.15 | 22.00 | ||
143,789.80 | 1,284,350.00 | 3.75 | 6.00 | 42,196.80 | 207,211.00 | 3.65 | 5.00 | 10.55 | 14.00 | ||
25 | 2369.90 | 5584.00 | 3.85 | 5.00 | 20,517.15 | 376,660.00 | 3.15 | 5.00 | 16.15 | 22.00 | |
1,427,065.00 | 2,1728,000.00 | 3.70 | 5.00 | 21,393.85 | 392,099.00 | 3.20 | 6.00 | 16.00 | 17.00 | ||
5,066,261.60 | 25,664,200.00 | 4.10 | 6.00 | 99,544.30 | 956,083.00 | 3.20 | 4.00 | 31.30 | 38.00 | ||
30 | 16,604.50 | 25,070.00 | 4.00 | 6.00 | 4375.70 | 4461.00 | 3.60 | 7.00 | 31.40 | 37.00 | |
601,835.20 | 3,554,380.00 | 3.50 | 5.00 | 86,111.60 | 481,486.00 | 4.60 | 6.00 | 16.80 | 21.00 | ||
4,268,488.70 | 33,343,700.00 | 3.70 | 5.00 | 309,401.00 | 1,527,302.00 | 4.70 | 6.00 | 39.70 | 47.00 | ||
35 | 65,676.20 | 105,503.00 | 4.10 | 6.00 | 160,268.60 | 1,546,322.00 | 4.30 | 5.00 | 38.40 | 47.00 | |
9,298,598.50 | 51,121,800.00 | 3.80 | 7.00 | 5772.70 | 7089.00 | 4.50 | 7.00 | 33.90 | 41.00 | ||
20,820,497.90 | 52,642,500.00 | 2.70 | 4.00 | 8565.50 | 8792.00 | 7.90 | 30.00 | 43.60 | 54.00 | ||
40 | 190,590.40 | 368,151.00 | 3.70 | 5.00 | 8691.50 | 8828.00 | 5.80 | 8.00 | 47.80 | 63.00 | |
5,528,939.50 | 27,787,500.00 | 3.20 | 7.00 | 464,756.60 | 2,319,506.00 | 6.40 | 9.00 | 48.50 | 59.00 |
n | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
1.01130 | 1.03500 | 1.00577 | 1.01900 | 1.00287 | 1.01980 | 1.00233 | 1.01364 | ||
15 | 1.09401 | 1.14836 | 1.06650 | 1.10572 | 1.02484 | 1.07558 | 1.01209 | 1.02651 | |
1.00714 | 1.02365 | 1.00273 | 1.01707 | 1.00063 | 1.01201 | 1.00047 | 1.00470 | ||
1.03847 | 1.12905 | 1.02393 | 1.10072 | 1.00966 | 1.04217 | 1.01025 | 1.04472 | ||
20 | 1.18845 | 1.34761 | 1.13616 | 1.24466 | 1.06560 | 1.14771 | 1.03325 | 1.05427 | |
1.02219 | 1.08104 | 1.01351 | 1.06151 | 1.00662 | 1.04503 | 1.00626 | 1.03186 | ||
1.07318 | 1.19098 | 1.05217 | 1.15483 | 1.02053 | 1.08778 | 1.03136 | 1.08909 | ||
25 | 1.26706 | 1.40217 | 1.20397 | 1.30864 | 1.10017 | 1.18650 | 1.04449 | 1.06906 | |
1.09087 | 1.24151 | 1.06270 | 1.15799 | 1.03807 | 1.14498 | 1.02875 | 1.06715 | ||
1.15371 | 1.30613 | 1.10994 | 1.23900 | 1.05266 | 1.12934 | 1.07038 | 1.12488 | ||
30 | 1.35286 | 1.55295 | 1.27031 | 1.45067 | 1.12680 | 1.24768 | 1.05119 | 1.09875 | |
1.11996 | 1.19086 | 1.09196 | 1.15247 | 1.03394 | 1.06876 | 1.04819 | 1.08544 | ||
1.21194 | 1.31187 | 1.16686 | 1.24187 | 1.06455 | 1.12493 | 1.10517 | 1.16566 | ||
35 | 1.40078 | 1.51959 | 1.31443 | 1.47948 | 1.11353 | 1.24715 | 1.05061 | 1.06747 | |
1.23176 | 1.29278 | 1.17090 | 1.15716 | 1.09055 | 1.15716 | 1.07416 | 1.11478 | ||
1.27299 | 1.35269 | 1.21620 | 1.28419 | 1.07545 | 1.11756 | 1.11328 | 1.16429 | ||
40 | 1.47695 | 1.72109 | 1.38209 | 1.54249 | 1.08588 | 1.23025 | 1.04938 | 1.07340 | |
1.26862 | 1.40423 | 1.20602 | 1.32286 | 1.09902 | 1.16624 | 1.10156 | 1.13899 |
n | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
1.05674 | 1.20623 | 1.03471 | 1.16052 | 1.01539 | 1.07773 | 1.00858 | 1.05591 | ||
15 | 1.21500 | 1.48927 | 1.13875 | 1.32034 | 1.06802 | 1.20538 | 1.00852 | 1.02564 | |
1.05543 | 1.16365 | 1.03285 | 1.10070 | 1.01011 | 1.06412 | 1.00527 | 1.01993 | ||
1.12471 | 1.33094 | 1.08136 | 1.26717 | 1.03191 | 1.08737 | 1.03051 | 1.03702 | ||
20 | 1.36101 | 1.49677 | 1.22776 | 1.34897 | 1.08376 | 1.24973 | 1.01623 | 1.02495 | |
1.12802 | 1.31321 | 1.08137 | 1.23608 | 1.03908 | 1.12404 | 1.02079 | 1.04593 | ||
1.20745 | 1.47668 | 1.12907 | 1.34243 | 1.10286 | 1.75250 | 1.04990 | 1.08146 | ||
25 | 1.33965 | 1.59951 | 1.22889 | 1.36198 | 1.09476 | 1.27622 | 1.01893 | 1.03304 | |
1.21767 | 1.35760 | 1.14856 | 1.27145 | 1.07122 | 1.14937 | 1.03475 | 1.08024 | ||
1.33229 | 1.88696 | 1.23170 | 1.62900 | 1.11628 | 1.30541 | 1.08435 | 1.17439 | ||
30 | 1.44481 | 1.79102 | 1.26830 | 1.51501 | 1.07284 | 1.38083 | 1.01785 | 1.02863 | |
1.28357 | 1.49579 | 1.19603 | 1.35222 | 1.10025 | 1.25002 | 1.04630 | 1.09886 | ||
1.43892 | 1.77995 | 1.31996 | 1.56567 | 1.16249 | 1.40452 | 1.09702 | 1.24194 | ||
35 | 1.50847 | 1.81016 | 1.33659 | 1.54965 | 1.04960 | 1.26749 | 1.01678 | 1.02205 | |
1.51732 | 1.85319 | 1.38176 | 1.65955 | 1.19011 | 1.39431 | 1.04774 | 1.10317 | ||
1.60847 | 1.99279 | 1.44337 | 1.75120 | 1.21726 | 1.45192 | 1.08691 | 1.13249 | ||
40 | 1.54510 | 1.91770 | 1.32820 | 1.56574 | 1.00914 | 1.02892 | 1.01318 | 1.01880 | |
1.62767 | 1.93104 | 1.46706 | 1.70305 | 1.22651 | 1.40117 | 1.04229 | 1.06242 |
n | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
1.03603 | 1.14926 | 1.01966 | 1.09956 | 1.00647 | 1.02747 | 1.00515 | 1.02818 | ||
15 | 1.16703 | 1.31754 | 1.10459 | 1.18828 | 1.07194 | 1.21232 | 1.01479 | 1.04807 | |
1.17680 | 1.02650 | 1.09727 | 1.01306 | 1.07298 | 1.00554 | 1.02797 | 1.05021 | ||
1.08338 | 1.22684 | 1.05476 | 1.16968 | 1.02351 | 1.10015 | 1.02158 | 1.05933 | ||
20 | 1.28262 | 1.45748 | 1.18372 | 1.37350 | 1.10098 | 1.20654 | 1.02341 | 1.04308 | |
1.40915 | 1.56852 | 1.27367 | 1.44357 | 1.11325 | 1.24789 | 1.03637 | 1.04900 | ||
1.15285 | 1.26169 | 1.10954 | 1.20068 | 1.04805 | 1.11419 | 1.05521 | 1.10118 | ||
25 | 1.40915 | 1.56852 | 1.27367 | 1.44357 | 1.11325 | 1.24789 | 1.03637 | 1.04900 | |
1.15196 | 1.28620 | 1.10511 | 1.21874 | 1.04765 | 1.17361 | 1.04341 | 1.09800 | ||
1.26896 | 1.44796 | 1.20095 | 1.33424 | 1.09360 | 1.15919 | 1.10978 | 1.16231 | ||
30 | 1.38812 | 1.59121 | 1.27372 | 1.51491 | 1.07134 | 1.20100 | 1.03321 | 1.04538 | |
1.25045 | 1.35469 | 1.17607 | 1.25551 | 1.08704 | 1.20058 | 1.06258 | 1.09529 | ||
1.40779 | 1.77403 | 1.29813 | 1.55328 | 1.13990 | 1.23679 | 1.12537 | 1.16885 | ||
35 | 1.49615 | 1.63735 | 1.28232 | 1.51277 | 1.10967 | 1.33036 | 1.03519 | 1.04811 | |
1.33965 | 1.67159 | 1.24468 | 1.51793 | 1.11782 | 1.31976 | 1.07395 | 1.13762 | ||
1.51804 | 1.05095 | 1.39466 | 1.84225 | 1.18314 | 1.36730 | 1.14527 | 1.20916 | ||
40 | 1.51672 | 1.65812 | 1.37005 | 1.52064 | 1.02675 | 1.06001 | 1.02962 | 1.04718 | |
1.49732 | 1.85312 | 1.37096 | 1.69225 | 1.18359 | 1.33773 | 1.07696 | 1.11406 |
n | Instance | Optimal Value | CPU Time (ms) | Optimal Value | CPU Time (ms) | Optimal Value | CPU Time (ms) |
1 | 1877.64||1877.641 | 19||74 | 11,767.39||11,767.391 | 1||62 | 5032.861||5032.862 | 42||67 | |
2 | 2230.077||2230.069 | 662||73 | 9018.022||9018.023 | 5||68 | 4381.909||4381.91 | 76||74 | |
3 | 2331.78||2331.72 | 213||70 | 6552.248||6552.223 | 3||65 | 6676.791||6676.791 | 354||60 | |
4 | 1930.146||1930.147 | 220||69 | 9691.73||9691.738 | 2||72 | 5332.758||5332.777 | 105||86 | |
20 | 5 | 2584.912||2584.915 | 14||65 | 9536.494||9536.497 | 2||59 | 4078.021||4078.03 | 1054||75 |
6 | 1916.657||1916.632 | 262||63 | 8971.364||8971.365 | 4||69 | 4770.602||4770.602 | 876||88 | |
7 | 2349.085||2349.09 | 109||72 | 12,743.678||12,743.678 | 1||76 | 3044.157||3044.158 | 686||68 | |
8 | 2626.915||2626.91 | 458||82 | 9792.175||9792.177 | 6||55 | 3592.465||3592.457 | 156||56 | |
9 | 3304.571||3304.571 | 62||66 | 11,234.99||11,234.99 | 2||59 | 4284.786||4284.787 | 253||63 | |
10 | 3213.249||3213.25 | 20||77 | 8078.607||8078.611 | 3||63 | 6258.689 ||6258.689 | 11||73 | |
1 | 2440.8766||2440.8766 | 29||78 | 13501.21||13,501.21 | 5||75 | 8185.514||8185.515 | 1825||75 | |
2 | 3651.772||3651.773 | 32||82 | 17,962.842||17,962.843 | 1||76 | 8021.395||8021.396 | 682||88 | |
3 | 3599.892||3599.889 | 33,846||75 | 12,834.31||12,834.32 | 24||80 | 5102.548||5102.549 | 21,541||72 | |
4 | 2668.11||2668.11 | 1741||75 | 13,387.565||13,387.542 | 5||76 | 7913.71||7913.717 | 213||83 | |
25 | 5 | 2929.49||2929.6 | 40||72 | 14,708.966||14,708.977 | 15||98 | 5360.984||5360.985 | 5017||70 |
6 | 3571.392||3571.39 | 408||77 | 13,661.573||13,661.58 | 78||73 | 4762.564||4762.542 | 35||85 | |
7 | 3402.194||3402.194 | 614||78 | 14,761.3||14,761.3 | 3||73 | 5567.564||5567.56 | 34||70 | |
8 | 2098.52||2098.525 | 12,589||73 | 16,402.6||16,402.63 | 3||71 | 5397.842||5397.885 | 96,618||89 | |
9 | 3081.57||3081.562 | 74,684||88 | 15,497.219||15,497.22 | 30||88 | 5549.425||5549.423 | 28,735||87 | |
10 | 3054.281||3054.288 | 57||69 | 12,570.492||12,570.488 | 3||77 | 7384.72||7384.724 | 16||59 | |
1 | 4761.895||4761.895 | 13,576||80 | 20,825.46||20,825.468 | 2||85 | 7114.616||7114.615 | 4587||95 | |
2 | 3930.492||3930.493 | 474,584||78 | 23,541.618||23,541.618 | 72||85 | 5594.15||5594.158 | 15,516||84 | |
3 | 5184.257||5184.258 | 3145||82 | 21,762.827||21,762.828 | 5||83 | 10,639.97||10,639.97 | 78,565||89 | |
4 | 3445.295||3445.295 | 448||98 | 19,283.161||19,283.162 | 5||93 | 6635.125||6635.151 | 35,242||82 | |
30 | 5 | 5420.63||5420.645 | 3586||82 | 21,259.49||21,259.457 | 5||83 | 8109.199||8109.192 | 5334||97 |
6 | 3352.281||3352.267 | 9||98 | 22,234.591||22,234.587 | 1||76 | 4331.347||4331.378 | 87,785||87 | |
7 | 3452.28||3452.281 | 8||35 | 17,115.157||17,115.15 | 14||78 | 6708.094||6708.051 | 15,5681||76 | |
8 | 3800.062||3800.063 | 27,475||98 | 19,162.501||19,162.503 | 6||89 | 7251.21||7251.22 | 958,872|| 79 | |
9 | 5389.884||5389.885 | 27,512||78 | 19,553.989||195,53.989 | 1||86 | 6495.424||6495.424 | 419||84 | |
10 | 3226.58||3226.52 | 8755||86 | 16,351.4||16,351.4 | 10||85 | 7976.82||7976.82 | 987,855||92 |
n | Instance | Optimal Value | CPU Time (ms) | Optimal Value | CPU Time (ms) | Optimal Value | CPU Time (ms) |
1 | 3224.206||3224.205 | 6||72 | 13,078.051||13,078.052 | 3||78 | 4581.808||4581.808 | 211||75 | |
2 | 1920.143||1920.144 | 72||76 | 14,416.229||14,416.23 | 2||67 | 5984.757||5984.757 | 17||77 | |
3 | 1791.398||1791.398 | 26||73 | 16,763.404||16,763.404 | 14||75 | 4306.999||4307.001 | 1||76 | |
4 | 3194.432||3194.433 | 199||78 | 13,161.205||13,161.189 | 1||69 | 5299.028||5299.029 | 11||69 | |
20 | 5 | 2599.284||2599.284 | 2||70 | 16,456.45||16,456.45 | 6||78 | 7654.312||7654.311 | 19||76 |
6 | 2309.754||2309.753 | 17||73 | 15,081.528||15,081.527 | 355||80 | 6500.897||6500.875 | 86||70 | |
7 | 2352.418||2352.418 | 10||69 | 16,248.781||16,248.783 | 8||75 | 6551.345||6551.352 | 3||78 | |
8 | 3382.56||3382.558 | 2||72 | 13,478.75||13,478.778 | 4||83 | 6473.928||6473.917 | 18||72 | |
9 | 3103.121||3103.121 | 4||70 | 16,133.258||16,133.257 | 996||77 | 5987.109||5987.11 | 10||68 | |
10 | 2467.09||2467.092 | 28||71 | 15,250.86||15,250.87 | 7||70 | 5011.23||5011.230 | 77||77 | |
1 | 3381.737||3381.739 | 224||73 | 24,283.305||24,283.274 | 1||71 | 7095.573||7095.567 | 10||70 | |
2 | 4686.301||4686.296 | 5||74 | 37,005.444||37,005.441 | 2||75 | 6754.407||6754.412 | 2||82 | |
3 | 6456.931||6456.932 | 1||69 | 24,295.173||24,295.174 | 1||73 | 6870.603||6870.608 | 9||76 | |
4 | 4357.681||4357.682 | 130||66 | 25,835.513||25,835.527 | 3||76 | 7434.996||7434.992 | 216||75 | |
25 | 5 | 5452.679||5452.684 | 103||77 | 31,347.823||31,347.787 | 1||70 | 7352.652||7352.653 | 58|| 76 |
6 | 7397.109||7397.108 | 183||72 | 24,678.259||24,678.27 | 4||72 | 8575.343||8575.338 | 15||73 | |
7 | 5200.723||5200.718 | 39||69 | 22,434.802||22,434.803 | 1||78 | 8431.151||8431.15 | 90||87 | |
8 | 3852.579||3852.578 | 464||67 | 28,767.763||28,767.782 | 1||74 | 7703.809||7703.809 | 11||72 | |
9 | 6625.675||6625.675 | 58||68 | 36,563.797||36,563.786 | 3||77 | 9380.949||9380.949 | 8||87 | |
10 | 3153.421||3153.422 | 4||63 | 28,022.863||28,022.806 | 1||70 | 5833.467||5833.467 | 27||89 | |
1 | 3785.294||3785.295 | 49,995||78 | 55,855.796||55,855.714 | 1||88 | 22,799.14||22,799.116 | 452||76 | |
2 | 4185.165||4185.165 | 73||90 | 35,568.274||35,568.261 | 9||82 | 7981.994||7981.978 | 673||73 | |
3 | 4877.96||4877.96 | 1617||79 | 57,761.936||57,761.94 | 1||75 | 15,434.62||15,434.639 | 19||80 | |
4 | 5692.011||5692.012 | 5||69 | 44,756.236||44,756.236 | 2||74 | 19,177.76||19,177.758 | 3||80 | |
30 | 5 | 7250.617||7250.618 | 5||79 | 37,478.351||37,478.332 | 3||72 | 15816.347||15,816.335 | 37||73 |
6 | 5247.79||5247.79 | 34||88 | 55,426.436||55,426.501 | 1||77 | 25,672.837||25,672.852 | 307||73 | |
7 | 6364.644||6364.644 | 141||84 | 45,668.881||45,668.846 | 5||70 | 12,609.977||12,609.978 | 673||76 | |
8 | 6525.450||6525.450 | 4||76 | 54,463.341||54,463.341 | 1||77 | 11,243.774||11,243.772 | 16||70 | |
9 | 5198.277||5198.277 | 26,756||82 | 56,327.158||56,327.19 | 2||75 | 21,031.685||21,031.685 | 525||75 | |
10 | 5735.88||5735.88 | 113||72 | 37,847.965||37,847.972 | 1||77 | 7605.592||7605.592 | 8665||89 |
n | Instance | Optimal Value | CPU Time (ms) | Optimal Value | CPU Time (ms) | Optimal Value | CPU Time (ms) |
1 | 3143.66||3143.668 | 1272||74 | 10,023.477||10,023.48 | 1||70 | 6838.891||6838.892 | 27||62 | |
2 | 3170.929||3170.931 | 448||74 | 12,336.148||12,336.15 | 1||72 | 9484.171||9484.173 | 57||64 | |
3 | 3210.143||3210.145 | 254||72 | 12,840.194||12,840.195 | 2||68 | 5133.177||5133.176 | 4777||65 | |
4 | 2251.857||2251.857 | 18||70 | 8797.323||8797.323 | 2||75 | 6765.709||6765.709 | 35||67 | |
20 | 5 | 2091.515||2091.51 | 2||78 | 12,620.946||12,620.946 | 1||64 | 4780.693||4780.693 | 11||64 |
6 | 3006.8||3006.803 | 2401||66 | 14,114.352||14,114.351 | 3||68 | 4873.354||4873.354 | 1051||64 | |
7 | 2740.521||2740.521 | 381||75 | 10,801.699||10,801.706 | 1||61 | 6112.412||6112.412 | 210||62 | |
8 | 2257.812||2257.813 | 40||70 | 13,489.863||13,489.864 | 2||68 | 6112.412||6112.412 | 209||72 | |
9 | 2507.171||2507.171 | 102||66 | 12,856.903||12,856.906 | 1||66 | 4763.482||4763.48 | 58||69 | |
10 | 2620.089||2620.09 | 42||65 | 13,178.881||13,178.881 | 3||76 | 3380.259||3380.258 | 2023||66 | |
1 | 2857.342||2857.343 | 2768||87 | 16,125.897||16,125.9 | 1||69 | 5816.16||5816.158 | 19,384||86 | |
2 | 5265.281||5265.281 | 5||78 | 20,263.138||20,263.151 | 1515||69 | 6627.122||6627.125 | 2093||81 | |
3 | 2914.465||2914.465 | 59,283||68 | 18,216.342||18,216.342 | 2||73 | 8545.714||8545.714 | 7720||77 | |
4 | 3698.654||3698.656 | 6||75 | 16,756.839||16,756.838 | 3||77 | 7557.438||7557.44 | 12,560||82 | |
25 | 5 | 3012.074||3012.07 | 27||80 | 21,526.798||21,526.798 | 57||70 | 10,129.488||10,129.48 | 855||79 |
6 | 6086.928||6086.931 | 3||67 | 16,461.209||16,461.21 | 43||72 | 6686.74||6686.739 | 27||85 | |
7 | 4097.154||4097.154 | 8||68 | 14,856.578||14,856.587 | 1||66 | 6686.74||6686.739 | 23||84 | |
8 | 2242.35||2242.355 | 13575||70 | 23,343.777||23,343.791 | 15||69 | 5613.54||5613.538 | 75,757||80 | |
9 | 4191.34||4191.34 | 45123||71 | 17,754.949||17,754.95 | 2||79 | 7486.88||7486.88 | 14,548||72 | |
10 | 3572.956||3572.957 | 44||70 | 19,581.42||19,581.412 | 2||90 | 8447.198||8447.198 | 605||76 | |
1 | 5761.119||5761.122 | 7679||85 | 25,379.136||25,379.138 | 1||80 | 7612.346||7612.344 | 92||78 | |
2 | 2694.968||2694.957 | 78,897||75 | 28,587.885||28,587.905 | 8||77 | 8778.962||8778.963 | 9968||84 | |
3 | 4941.414||4941.418 | 1140||80 | 26,516.25||26,516.251 | 3777||83 | 8861.97||8861.976 | 8861||89 | |
4 | 4327.01||4327.012 | 11,250||94 | 31,780.398||31,780.403 | 2||73 | 12,951.088||12,951.089 | 235||102 | |
30 | 5 | 3777.884||3777.885 | 4769||95 | 27,277.598||27,277.589 | 6||72 | 9645.175||9645.182 | 239||94 |
6 | 7943.162||7943.168 | 157||90 | 32,927.444||32,927.447 | 75,888||86 | 9645.175||9645.17 | 234||86 | |
7 | 3849.75||3849.75 | 27,377||96 | 25,798.781||25,798.775 | 1||78 | 26,305.916||26,305.917 | 797||86 | |
8 | 4951.373||4951.374 | 2541||97 | 28,156.49||28,156.489 | 4||77 | 24,538.923||24,538.936 | 2||70 | |
9 | 4717.61||4717.614 | 7888||95 | 22,417.729||22,417.734 | 8678||81 | 11,439.549||11,439.549 | 261||88 | |
10 | 4389.528||4389.531 | 84||90 | 24,675.208||24,675.207 | 3||78 | 12,783.488||12,783.492 | 4258||86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.-G.; Zhang, L.-H.; Wang, X.-Y.; Wang, J.-B. Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization. Mathematics 2024, 12, 610. https://doi.org/10.3390/math12040610
Lv Z-G, Zhang L-H, Wang X-Y, Wang J-B. Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization. Mathematics. 2024; 12(4):610. https://doi.org/10.3390/math12040610
Chicago/Turabian StyleLv, Zheng-Guo, Li-Han Zhang, Xiao-Yuan Wang, and Ji-Bo Wang. 2024. "Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization" Mathematics 12, no. 4: 610. https://doi.org/10.3390/math12040610
APA StyleLv, Z. -G., Zhang, L. -H., Wang, X. -Y., & Wang, J. -B. (2024). Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization. Mathematics, 12(4), 610. https://doi.org/10.3390/math12040610