A Two-Grid Algorithm of the Finite Element Method for the Two-Dimensional Time-Dependent Schrödinger Equation
Abstract
:1. Introduction
2. Notation and Preliminaries
3. Two-Grid Algorithm in the Backward Euler Fully Discrete Scheme
Algorithm 1: Two-grid finite element in the backword Euler scheme. |
Step 1: Find the fully discrete finite element solutions such that
Step 2: Find such that
|
4. Two-Grid Algorithm in the Crank–Nicolson Fully Discrete Scheme
Algorithm 2: Two-grid finite element in the Crank–Nicolson scheme. |
Step 1: Find the fully discrete finite element solutions such that
Step 2: Find such that
|
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Akrivis, G.D.; Dougalis, V.A.; Karakashian, O.A. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 1991, 59, 31–53. [Google Scholar] [CrossRef]
- Antonopoulou, D.C.; Karali, G.D.; Plexousakis, M.; Zouraris, G.E. Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain. Math. Comp. 2015, 84, 1571–1598. [Google Scholar] [CrossRef]
- Li, M.; Gu, X.; Huang, C.; Fei, M.; Zhang, G. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 2018, 358, 256–282. [Google Scholar] [CrossRef]
- Shi, D.; Wang, P.; Zhao, Y. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 2014, 38, 129–134. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, Y.; Wang, J. Superconvergence analysis of bilinear finite element for the nonlinear Schrödinger equation on the rectangular mesh. Adv. Appl. Math. Mech. 2018, 10, 468–484. [Google Scholar] [CrossRef]
- Xu, J. A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 1994, 15, 231–237. [Google Scholar] [CrossRef]
- Xu, J. Two-grid discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 1996, 33, 1759–1777. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y. A multi-level iterative method for solving finite element equations of nonlinear singular two-point boundary value problems. Nat. Sci. J. Xiangtan Univ. 1994, 16, 23–26. (In Chinese) [Google Scholar]
- Xu, J.; Zhou, A. Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp. 2000, 69, 881–909. [Google Scholar] [CrossRef]
- Bi, C.; Wang, C.; Lin, Y. A posteriori error estimates of two-grid finite element methods for nonlinear elliptic problems. J. Sci. Comput. 2018, 74, 23–48. [Google Scholar] [CrossRef]
- Dawson, C.N.; Wheeler, M.F. Two-grid method for mixed finite element approximations of non-linear parabolic equations. Contemp. Math. 1994, 180, 191–203. [Google Scholar]
- Chen, Y.; Luan, P.; Lu, Z. Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods. Adv. Appl. Math. Mech. 2009, 1, 830–844. [Google Scholar] [CrossRef]
- Chen, C.; Yang, M.; Bi, C. Two-grid methods for finite volume element approximations of nonlinear parabolic equations. J. Comput. Appl. Math. 2009, 228, 123–132. [Google Scholar] [CrossRef]
- Shi, D.; Yang, H. Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation. Appl. Math. Comput. 2017, 310, 40–47. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y. Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput. 2011, 49, 383–401. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Yu, D. A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Meth. Eng. 2003, 57, 193–209. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, H. Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics. Commun. Comput. Phys. 2016, 19, 1503–1528. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, J.; Zhou, J. Lp error estimates of two-grid method for miscible displacement problem. J. Sci. Comput. 2016, 69, 28–51. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, C.; Shu, S. Two-level additive preconditioners for edge element discretizations of time-harmonic Maxwell equations. Comput. Math. Appl. 2013, 66, 432–440. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, X.; Zhong, L.; Shu, S.; Chen, L. Two-grid methods for Maxwell eigenvalue problems. SIAM J. Numer. Anal. 2014, 52, 2027–2047. [Google Scholar] [CrossRef]
- Jin, J.; Shu, S.; Xu, J. A two-grid discretization method for decoupling systems of partial differential equations. Math. Comp. 2006, 75, 1617–1626. [Google Scholar] [CrossRef]
- Chien, C.S.; Huang, H.T.; Jeng, B.W.; Li, Z.C. Two-grid discretization schemes for nonlinear Schrödinger equations. J. Comput. Appl. Math. 2008, 214, 549–571. [Google Scholar] [CrossRef]
- Wu, L. Two-grid mixed finite-element methods for nonlinear Schrödinger equations. Numer. Methods Partial. Differ. Equ. 2012, 28, 63–73. [Google Scholar] [CrossRef]
- Hu, H. Two-grid method for two-dimensional nonlinear Schrödinger equation by mixed finite element method. Comput. Math. Appl. 2018, 75, 900–917. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, Y.; Huang, Y.; Wang, J. Two-grid method for the two-dimensional time-dependent Schrödinger equation by the finite element method. Comput. Math. Appl. 2019, 77, 3043–3053. [Google Scholar] [CrossRef]
- Wang, J.; Jin, J.; Tian, Z. Two-grid finite element method with Crank-Nicolson fully discrete scheme for the time-dependent Schrödinger equation. Numer. Math. Theor. Meth. Appl. 2020, 13, 334–352. [Google Scholar]
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
4.8118 × | / | 1.01 | 5.5043× | / | 0.022 | 5.6914 × | |
1.2050 × | 1.00 | 26.2 | 1.3769 × | 1.00 | 0.227 | 1.4358 × | |
3.0129 × | 1.00 | 719 | 3.4431 × | 1.00 | 5.13 | 3.5989 × |
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
5.3163 × | / | 1.81 | 5.8987 × | / | 0.023 | 5.8826 × | |
1.3317 × | 1.00 | 53.5 | 1.4885 × | 0.99 | 0.235 | 1.4925 × | |
3.3300 × | 1.00 | 1337 | 3.7389 × | 1.00 | 5.21 | 3.7566 × |
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
7.1758 × | / | 4.48 | 7.5505 × | / | 0.024 | 7.8295 × | |
1.7980 × | 1.00 | 128 | 1.8546 × | 1.01 | 0.241 | 1.9261 × | |
4.4970 × | 1.00 | 3769 | 4.6007 × | 1.01 | 5.38 | 4.7613 × |
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
1.2075 × | / | 8.88 | 1.2310 × | / | 0.028 | 1.2626 × | |
3.0266 × | 1.00 | 253 | 3.0539 × | 1.01 | 0.243 | 3.1258 × | |
7.6032 × | 1.00 | 7551 | 7.6687 × | 1.00 | 5.56 | 7.8453 × |
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
8.6473 × | / | 1.55 | 8.9016 × | / | 1.23 | 8.9119 × | |
2.1611 × | 1.00 | 29.7 | 2.2292 × | 1.00 | 19.2 | 2.2318 × | |
5.4027 × | 1.00 | 964 | 5.5751 × | 1.00 | 606 | 5.5815 × |
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
9.5565 × | / | 3.15 | 1.0241 × | / | 2.27 | 1.0288 × | |
2.3884 × | 1.00 | 59.8 | 2.5708 × | 1.00 | 38.7 | 2.5825 × | |
5.9709 × | 1.00 | 2143 | 6.4347 × | 1.00 | 1116 | 6.4640 × |
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
1.2901 × | / | 7.51 | 1.4629 × | / | 5.48 | 1.4890 × | |
3.2240 × | 1.00 | 148 | 3.6766 × | 1.00 | 118 | 3.7434 × | |
8.0599 × | 1.00 | 5027 | 9.2073 × | 1.00 | 2775 | 9.3754 × |
H | Order | Time (s) | Order | Time (s) | |||
---|---|---|---|---|---|---|---|
2.1268 × | / | 14.9 | 2.2899 × | / | 10.8 | 2.3462 × | |
5.3155 × | 1.00 | 299 | 5.7344 × | 1.00 | 239 | 5.8793 × | |
1.3289 × | 1.00 | 9594 | 1.4342 × | 1.00 | 5455 | 1.4708 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhong, Z.; Tian, Z.; Liu, Y. A Two-Grid Algorithm of the Finite Element Method for the Two-Dimensional Time-Dependent Schrödinger Equation. Mathematics 2024, 12, 726. https://doi.org/10.3390/math12050726
Wang J, Zhong Z, Tian Z, Liu Y. A Two-Grid Algorithm of the Finite Element Method for the Two-Dimensional Time-Dependent Schrödinger Equation. Mathematics. 2024; 12(5):726. https://doi.org/10.3390/math12050726
Chicago/Turabian StyleWang, Jianyun, Zixin Zhong, Zhikun Tian, and Ying Liu. 2024. "A Two-Grid Algorithm of the Finite Element Method for the Two-Dimensional Time-Dependent Schrödinger Equation" Mathematics 12, no. 5: 726. https://doi.org/10.3390/math12050726
APA StyleWang, J., Zhong, Z., Tian, Z., & Liu, Y. (2024). A Two-Grid Algorithm of the Finite Element Method for the Two-Dimensional Time-Dependent Schrödinger Equation. Mathematics, 12(5), 726. https://doi.org/10.3390/math12050726