Approximate Solution of PHI-Four and Allen–Cahn Equations Using Non-Polynomial Spline Technique
Abstract
:1. Introduction
2. The Proposed Methodology
3. Stability of the Method
Convergence Test
4. Examples
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Triki, H.; Wazwaz, A.-M. Bright and dark soliton solutions for a k (m, n) equation with t-dependent coefficients. Phys. Lett. A 2009, 373, 2162–2165. [Google Scholar] [CrossRef]
- Zahra, W. Trigonometric b-spline collocation method for solving phi-four and allen–cahn equations. Mediterr. J. Math. 2017, 14, 1–19. [Google Scholar] [CrossRef]
- Triki, H.; Wazwaz, A.-M. On soliton solutions for the fitzhugh–nagumo equation with time-dependent coefficients. Appl. Math. Model. 2013, 37, 3821–3828. [Google Scholar] [CrossRef]
- Hariharan, G. An efficient legendre wavelet-based approximation method for a few newell–whitehead and allen–cahn equations. J. Membr. Biol. 2014, 247, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, G.; Kannan, K. Haar wavelet method for solving cahn-allen equation. Appl. Math. Sci. 2009, 3, 2523–2533. [Google Scholar]
- Beneš, M.; Chalupeckỳ, V.; Mikula, K. Geometrical image segmentation by the allen–cahn equation. Appl. Numer. Math. 2004, 51, 187–205. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Assas, L.M.; Alghamdi, M.A. An efficient spectral collocation algorithm for nonlinear phi-four equations. Bound. Value Probl. 2013, 87. [Google Scholar] [CrossRef]
- Ehsani, F.; Ehsani, F.; Hadi, A.; Hadi, N. Analytical solution of phi-four Equation. Tech. J. Eng. Appl. Sci. 2013, 3, 1378–1388. [Google Scholar]
- Triki, H.; Wazwaz, A.-M. Envelope solitons for generalized forms of the phi-four Equation. J. King Saud Univ.-Sci. 2013, 25, 129–133. [Google Scholar] [CrossRef]
- Alofi, A. Exact and explicit traveling wave solutions for the nonlinear partial differential equations. World Appl. Sci. J. 2013, 21, 62–67. [Google Scholar]
- Soliman, A.; Abdo, H. New exact solutions of nonlinear variants of the rlw, the phi-four and boussinesq equations based on modified extended direct algebraic method. arXiv 2012, arXiv:1207.5127. [Google Scholar]
- Najafi, M. Using he’s variational method to seek the traveling wave solution of phi-four equation. Int. J. Appl. Math. Res. 2012, 1, 659–665. [Google Scholar] [CrossRef]
- Ali, I.; Islam, S.; Siddique, I.; Min-Allah, N. Some efficient numerical solutions of allen-cahn equation with non-periodic boundary conditions. Int. J. Nonlinear Sci. 2011, 11, 380–384. [Google Scholar]
- Schoenberg, I.J. Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae. Q. Appl. Math. 1946, 4, 45–99. [Google Scholar] [CrossRef]
- Ahlberg, J.H.; Nilson, E.N. Convergence properties of the spline fit. J. Soc. Ind. Appl. Math. 1963, 11, 95–104. [Google Scholar] [CrossRef]
- Birkhoff, G.; Garabedian, H.L. Smooth surface interpolation. J. Math. Phys. 1960, 39, 258–268. [Google Scholar] [CrossRef]
- Loscalzo, F.R.; Talbot, T.D. Spline function approximations for solutions of ordinary differential equations. SIAM J. Numer. Anal. 1967, 4, 433–445. [Google Scholar] [CrossRef]
- Schultz, M.H.; Varga, R.S. L-splines. Numer. Math. 1967, 10, 345–369. [Google Scholar] [CrossRef]
- Rubin, S.; Khosla, P. Higher-order numerical solutions using cubic splines. AIAA J. 1976, 14, 851–858. [Google Scholar] [CrossRef]
- Schoenberg, I. Spline functions, convex curves and mechanical quadrature. Bull. Am. Math. Soc. 1958, 64, 352–357. [Google Scholar] [CrossRef]
- Albasiny, E.; Hoskins, W. Cubic spline solutions to two-point boundary value Problems. Comput. J. 1969, 12, 151–153. [Google Scholar] [CrossRef]
- Bickely, W. Piecewise cubic interpolation and two-point boundary value Problems. Comput. J. 1968, 11, 202–208. [Google Scholar]
- Swaid, M. Lineer Denklem Sistemlerinin Sonlu Fark Metodu ve Non-Polynomial Kübik Spline Metodu Yardımıyla Nümerik Çözümlerinin Elde Edilmesi. 2021. Available online: https://hdl.handle.net/11413/6548 (accessed on 23 November 2021).
- Jain, M.K.; Aziz, T. Spline function approximation for differential equations. Comput. Methods Appl. Mech. Eng. 1981, 26, 129–143. [Google Scholar] [CrossRef]
- Jain, M.K.; Aziz, T. Cubic spline solution of two-point boundary value problems with significant first derivatives. Comput. Methods Appl. Mech. Eng. 1983, 39, 83–91. [Google Scholar] [CrossRef]
- Usmani, R.A. The use of quartic splines in the numerical solution of a fourth-order boundary value problem. J. Comput. Appl. Math. 1992, 44, 187–200. [Google Scholar] [CrossRef]
- Usmani, R.A.; Sakai, M. Quartic spline solutions for two-point boundary problems involving third order differential equations. J. Math. Phys. Sci. 1984, 18, 365–380. [Google Scholar]
- Usmani, R.; Warsi, S. Quintic spline solutions of boundary value problems. Comput. Math. Appl. 1980, 6, 197–203. [Google Scholar] [CrossRef]
- Noor, M.A.; Tirmizi, I.A.; Khan, M.A.; Khan, M.A. Quadratic non-polynomial spline approach to the solution of a system of second-order boundary-value problems. Appl. Math. Comput. 2006, 179, 153–160. [Google Scholar]
- Tirmizi, I.A.; ul Islam, S. Nonpolynomial spline approach to the solution of a system of second-order boundary-value problems. Appl. Math. Comput. 2006, 173, 1208–1218. [Google Scholar]
- ul Islam, S.; Tirmizi, I.A.; Haq, F. Quartic non-polynomial splines approach to the solution of a system of second-order boundary-value problems. Int. J. High Perform. Comput. Appl. 2007, 21, 42–49. [Google Scholar] [CrossRef]
- Caglar, H.; Caglar, N. Fifth-degree b-spline solution for a fourth-order parabolic partial differential equations. Appl. Math. Comput. 2008, 201, 597–603. [Google Scholar] [CrossRef]
- Rashidinia, J.; Mahmoodi, Z. Non-polynomial spline solution of a singularly-perturbed boundary-value problems. Int. J. Contemp. Math. Sci. 2007, 2, 1581–1586. [Google Scholar] [CrossRef]
- Tirmizi, I.A.; ul Islam, S.; Hap, F. Non-polynomial spline solution of singularly perturbed boundary-value problems. Appl. Math. Comput. 2008, 196, 6–16. [Google Scholar] [CrossRef]
- Khan, M.A.; ul Islam, S. A numerical method based on polynomial sextic spline functions for the solution of special fifth-order boundary-value problems. Appl. Math. Comput. 2006, 181, 356–361. [Google Scholar]
- Siddiqi, S.S.; Akram, G. Solution of fifth order boundary value problems using nonpolynomial spline technique. Appl. Math. Comput. 2006, 175, 1574–1581. [Google Scholar] [CrossRef]
- Siddiqi, S.S.; Akram, G.; Malik, S.A. Nonpolynomial sextic spline method for the solution along with convergence of linear special case fifth-order two-point boundary value problems. Appl. Math. Comput. 2007, 190, 532–541. [Google Scholar] [CrossRef]
- Akram, G.; Siddiqi, S.S. Solution of sixth order boundary value problems using non-polynomial spline technique. Appl. Math. Comput. 2006, 181, 708–720. [Google Scholar] [CrossRef]
- Ramadan, M.A.; El-Danaf, T.S.; Alaal, F.E.A. Application of the non-polynomial spline approach to the solution of the burgers’ equation. Open Appl. Math. J. 2007, 1, 15–20. [Google Scholar] [CrossRef]
- Rashidinia, J.; Mohammadi, R. Non-polynomial cubic spline methods for the solution of parabolic equations. Int. J. Comput. Math. 2008, 85, 843–850. [Google Scholar] [CrossRef]
- Viswanadham, K.K.; Ballem, S. Numerical solution of eighth order boundary value problems by galerkin method with quintic b-splines. Int. J. Comput. Appl. 2013, 975, 8887. [Google Scholar]
- Alam, M.; Haq, S.; Ali, I.; Ebadi, M.J.; Salahshour, S. Radial basis functions approximation method for time-fractional fitzhugh–nagumo equation. Fractal Fract. 2023, 7, 882. [Google Scholar] [CrossRef]
- Radmanesh, M.; Ebadi, M.J. A local meshless radial basis functions based method for solving fractional integral equations. Comput. Algorithms Numer. Dimens. 2023, 2, 35–46. [Google Scholar]
- Avazzadeh, Z.; Hassani, H.; Agarwal, P.; Mehrabi, S.; Ebadi, M.J.; Asl, M.K.H. Optimal study on fractional fascioliasis disease model based on generalized fibonacci polynomials. Math. Methods Appl. Sci. 2023, 46, 9332–9350. [Google Scholar] [CrossRef]
- Schweikert, D.G. An interpolation curve using a spline in tension. J. Math. Phys. 1966, 45, 312–317. [Google Scholar] [CrossRef]
- Pruess, S. Properties of splines in tension. J. Approx. Theory 1976, 17, 86–96. [Google Scholar] [CrossRef]
- Madzvamuse, A.; Maini, P.K. Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. J. Comput. Phys. 2007, 225, 100–119. [Google Scholar] [CrossRef]
x/t | 0.002 | 0.004 | 0.006 | 0.008 | 0.01 | |
---|---|---|---|---|---|---|
[Present] | 0 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.1 | 1.43 | 1.83 | 8.42 | 2.12 | 4.32 | |
0.2 | 2.86 | 3.64 | 1.67 | 4.22 | 8.58 | |
0.3 | 4.36 | 5.35 | 2.46 | 6.21 | 1.26 | |
0.4 | 5.41 | 6.86 | 3.16 | 7.96 | 1.62 | |
0.5 | 5.81 | 8.02 | 3.69 | 9.30 | 1.89 | |
0.6 | 6.12 | 8.62 | 3.97 | 1.00 | 2.04 | |
0.7 | 5.48 | 8.43 | 3.88 | 9.78 | 1.99 | |
0.8 | 5.52 | 7.16 | 3.29 | 8.30 | 1.69 | |
0.9 | 2.61 | 4.47 | 2.06 | 5.19 | 1.06 | |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
[2] | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.1 | 1.28 | 6.75 | 1.63 | 2.98 | 4.75 | |
0.2 | 9.38 | 2.70 | 5.24 | 8.55 | 1.26 | |
0.3 | 6.94 | 1.08 | 1.73 | 4.83 | 9.22 | |
0.4 | 5.61 | 1.28 | 2.14 | 3.15 | 4.29 | |
0.5 | 1.31 | 2.39 | 3.23 | 3.82 | 4.15 | |
0.6 | 4.43 | 9.06 | 1.38 | 1.87 | 2.37 | |
0.7 | 1.18 | 2.32 | 3.41 | 4.45 | 5.43 | |
0.8 | 3.00 | 6.01 | 9.02 | 1.20 | 1.50 | |
0.9 | 5.53 | 1.10 | 1.64 | 2.17 | 2.69 | |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
x/t | 0.001 | 0.003 | 0.005 | 0.007 | 0.009 | 0.01 | |
---|---|---|---|---|---|---|---|
[Present] | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.1 | 1.35 | 3.79 | 5.96 | 7.92 | 9.73 | 1.06 | |
0.2 | 9.12 | 2.81 | 4.74 | 6.69 | 8.63 | 9.59 | |
0.3 | 6.28 | 1.91 | 3.24 | 4.61 | 6.03 | 6.75 | |
0.4 | 3.64 | 1.12 | 1.91 | 2.74 | 3.61 | 4.06 | |
0.5 | 1.30 | 4.14 | 7.28 | 1.07 | 1.45 | 1.65 | |
0.6 | 7.69 | 2.11 | 3.18 | 3.99 | 4.52 | 4.69 | |
0.7 | 2.58 | 7.57 | 1.23 | 1.69 | 2.12 | 2.33 | |
0.8 | 4.12 | 1.23 | 2.04 | 2.80 | 3.53 | 3.87 | |
0.9 | 5.92 | 1.64 | 2.54 | 3.32 | 4.01 | 4.32 | |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
[2] | 0 | 0.00 | 0.00 | 1.11 | 1.11 | 0.00 | 0.00 |
0.1 | 2.45 | 6.44 | 9.69 | 1.25 | 1.49 | 1.61 | |
0.2 | 2.00 | 6.13 | 1.02 | 1.40 | 1.76 | 1.94 | |
0.3 | 1.80 | 5.41 | 9.08 | 1.28 | 1.64 | 1.83 | |
0.4 | 1.59 | 4.81 | 8.05 | 1.13 | 1.47 | 1.63 | |
0.5 | 1.41 | 4.25 | 7.12 | 1.00 | 1.30 | 1.44 | |
0.6 | 1.24 | 3.75 | 6.28 | 8.84 | 1.14 | 1.27 | |
0.7 | 1.09 | 3.29 | 5.52 | 7.77 | 1.00 | 1.12 | |
0.8 | 9.50 | 2.90 | 4.82 | 6.71 | 8.54 | 9.43 | |
0.9 | 8.89 | 2.41 | 3.73 | 4.91 | 6.01 | 6.53 | |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
x/t | 0.001 | 0.003 | 0.005 | 0.007 | 0.009 | 0.01 | |
---|---|---|---|---|---|---|---|
[Present] | 0 | 3.75 | 3.75 | 3.75 | 3.75 | 3.75 | 3.75 |
0.1 | 1.35 | 6.31 | 1.11 | 1.43 | 1.66 | 1.75 | |
0.2 | 4.01 | 2.54 | 1.30 | 2.99 | 4.68 | 5.48 | |
0.3 | 9.50 | 4.91 | 3.56 | 2.37 | 7.31 | 1.04 | |
0.4 | 7.57 | 2.04 | 4.42 | 5.38 | 4.76 | 4.85 | |
0.5 | 7.41 | 2.24 | 3.66 | 5.30 | 6.69 | 6.94 | |
0.6 | 7.12 | 2.13 | 3.55 | 4.95 | 6.39 | 7.10 | |
0.7 | 6.77 | 2.03 | 3.37 | 4.70 | 6.01 | 6.66 | |
0.8 | 6.35 | 1.91 | 3.14 | 4.32 | 5.44 | 5.98 | |
0.9 | 6.09 | 1.65 | 2.53 | 3.30 | 4.00 | 4.33 | |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
[2] | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.1 | 2.51 | 7.07 | 1.13 | 1.53 | 1.92 | 2.11 | |
0.2 | 3.35 | 1.02 | 1.72 | 2.41 | 3.10 | 3.45 | |
0.3 | 4.39 | 1.33 | 2.23 | 3.15 | 4.09 | 4.56 | |
0.4 | 5.46 | 1.65 | 2.77 | 3.91 | 5.06 | 5.64 | |
0.5 | 6.54 | 1.98 | 3.31 | 4.67 | 6.04 | 6.74 | |
0.6 | 7.63 | 2.30 | 3.86 | 5.43 | 7.03 | 7.83 | |
0.7 | 8.70 | 2.62 | 4.40 | 6.19 | 7.97 | 8.85 | |
0.8 | 9.65 | 2.96 | 4.90 | 6.76 | 8.51 | 9.35 | |
0.9 | 1.16 | 3.06 | 4.62 | 5.95 | 7.14 | 7.69 | |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
t | C.R | |
---|---|---|
1/100 | 1.06 | — |
1/200 | 1.05 | 9.91 |
1/400 | 0.001054541 | 1.00 |
1/600 | 0.00105635 | 1.00 |
1/700 | 0.001056934 | 1.00 |
1/1000 | 0.001058059 | 1.00 |
t | C.R | |
---|---|---|
1/100 | 3.75 | — |
1/200 | 1.87 | 5.00 |
1/400 | 9.37 | 5.00 |
1/600 | 6.25 | 6.67 |
1/700 | 5.36 | 8.57 |
1/1000 | 3.75 | 7.00 |
x/t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
0 | 3.74 | 7.26 | 1.76 | 3.99 | 8.94 | 2.00 | 4.46 |
0.2 | 1.53 | 5.61 | 1.34 | 3.00 | 6.53 | 1.37 | 2.63 |
0.3 | 9.74 | 4.89 | 1.18 | 2.72 | 6.25 | 1.47 | 3.65 |
0.4 | 6.18 | 4.17 | 1.00 | 2.27 | 5.02 | 1.08 | 2.21 |
0.5 | 3.89 | 3.44 | 8.24 | 1.87 | 4.18 | 9.40 | 2.16 |
0.6 | 2.42 | 2.73 | 6.55 | 1.49 | 3.34 | 7.50 | 1.68 |
0.7 | 1.46 | 2.03 | 4.89 | 1.11 | 2.48 | 5.53 | 1.22 |
0.8 | 8.16 | 1.35 | 3.24 | 7.35 | 1.64 | 3.67 | 8.20 |
0.9 | 3.61 | 6.73 | 1.62 | 3.66 | 8.21 | 1.84 | 4.13 |
1 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 | 0.00 |
x/t | 8 | 9 | 10 | ||||
0 | 9.94 | 2.22 | 4.95 | ||||
0.2 | 3.88 | 7.20 | 4.63 | ||||
0.3 | 9.96 | 3.12 | 1.14 | ||||
0.4 | 3.79 | 2.32 | 2.71 | ||||
0.5 | 5.29 | 1.47 | 4.99 | ||||
0.6 | 3.67 | 7.40 | 1.05 | ||||
0.7 | 2.69 | 5.98 | 1.41 | ||||
0.8 | 1.85 | 4.23 | 9.90 | ||||
0.9 | 9.20 | 2.04 | 4.30 | ||||
1 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, M.U.; Haq, S.; Ali, I.; Ebadi, M.J. Approximate Solution of PHI-Four and Allen–Cahn Equations Using Non-Polynomial Spline Technique. Mathematics 2024, 12, 798. https://doi.org/10.3390/math12060798
Haq MU, Haq S, Ali I, Ebadi MJ. Approximate Solution of PHI-Four and Allen–Cahn Equations Using Non-Polynomial Spline Technique. Mathematics. 2024; 12(6):798. https://doi.org/10.3390/math12060798
Chicago/Turabian StyleHaq, Mehboob Ul, Sirajul Haq, Ihteram Ali, and Mohammad Javad Ebadi. 2024. "Approximate Solution of PHI-Four and Allen–Cahn Equations Using Non-Polynomial Spline Technique" Mathematics 12, no. 6: 798. https://doi.org/10.3390/math12060798
APA StyleHaq, M. U., Haq, S., Ali, I., & Ebadi, M. J. (2024). Approximate Solution of PHI-Four and Allen–Cahn Equations Using Non-Polynomial Spline Technique. Mathematics, 12(6), 798. https://doi.org/10.3390/math12060798