Cohen–Macaulayness of Vertex Splittable Monomial Ideals
Abstract
:1. Introduction
2. Preliminaries
2.1. Cohen–Macaulay Property
- (1)
- the multiplication map is injective for all i.
- (2)
- .
2.2. Vertex Splittable Monomial Ideals
- (i)
- If u is a monomial and , or , then I is vertex splittable.
- (ii)
- If there exists a variable and vertex splittable ideals andsuch that , and is the union of and , then I is vertex splittable.In this case, we say that is a vertex splitting of I and is a splitting vertex of I.
3. A Cohen–Macaulay Criterion
- (a)
- I is CM.
- (b)
- are CM, and .
- (a)
- for and .
- (b)
- and .
- (a)
- .
- (b)
- is Gorenstein if and only if I is a principal ideal.
- (c)
- is level if and only if and are level and .
- (d)
- is pseudo-Gorenstein if and only if one of the following occurs: Either is pseudo-Gorenstein and or is pseudo-Gorenstein and .
- (e)
- .
4. Families of Cohen–Macaulay Vertex Splittable Ideals
4.1. (Vector-Spread) Strongly Stable Ideals
- (a)
- I is vertex splittable;
- (b)
- I is CM if and only if there exists such that
4.2. Componentwise Polymatroidal Ideals
- (i)
- as monomial ideals of S.
- (ii)
- is a componentwise polymatroidal ideal of S.
- (iii)
- is a componentwise polymatroidal ideal of .
- (a)
- I is CM.
- (b)
- are CM componentwise polymatroidal ideals and .
- (a)
- A principal ideal.
- (b)
- A Veronese ideal.
- (c)
- A squarefree Veronese ideal.
- Case 1.
- Let be a principal ideal, then . Thus, .
- Case 2.
- Let be a Veronese ideal in m variables, then .
- Case 3.
- Let be a squarefree Veronese in m variables, . Then Lemma 2 implies with . Hence, .
4.3. Bi-Cohen–Macaulay Graphs
- (a)
- G is a bi-CM graph.
- (b)
- is a chordal graph with perfect elimination order and
- (b)
- Consider the graph H and its complementary graph depicted below in Figure 2.
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moradi, S.; Khosh-Ahang, F. On vertex decomposable simplicial complexes and their Alexander duals. Math. Scand. 2016, 118, 43–56. [Google Scholar] [CrossRef]
- Provan, J.S.; Billera, L.J. Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Oper. Res. 1980, 5, 576–594. [Google Scholar] [CrossRef]
- Björner, A.; Wachs, L. Wachs, Shellable nonpure complexes and posets, II. Trans. Amer. Math. Soc. 1997, 349, 3945–3975. [Google Scholar] [CrossRef]
- Villarreal, R.H. Monomial Algebras, 2nd ed.; Monographs and Research Notes in Mathematics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Herzog, H.; Hibi, T.; Zheng, X. Dirac’s theorem on chordal graphs and Alexander duality. Eur. J. Comb. 2004, 25, 949–960. [Google Scholar] [CrossRef]
- Herzog, H.; Hibi, T. Componentwise linear ideals. Nagoya Math. J. 1999, 153, 141–153. [Google Scholar] [CrossRef]
- Eagon, J.; Reiner, V. Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebra 1998, 130, 265–275. [Google Scholar] [CrossRef]
- Francisco, C.A.; Ha, H.T.; Van Tuyl, A. Splittings of monomial ideals. Proc. Amer. Math. Soc. 2009, 137, 3271–3282. [Google Scholar] [CrossRef]
- Bruns, W.; Herzog, J. Cohen–Macaulay Rings; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Herzog, H.; Hibi, T.; Ohsugi, H. Binomial Ideals; Graduate Texts in Mathematics; Springer: Cham, Switzerland, 2018; Volume 279. [Google Scholar]
- Ene, V.; Herzog, J.; Hibi, T.; Saeedi Madani, S. Pseudo-Gorenstein and level Hibi rings. J. Algebra 2015, 431, 138–161. [Google Scholar] [CrossRef]
- Ene, V.; Herzog, J. Gröbner Bases in Commutative Algebra; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2011; Volume 130. [Google Scholar]
- Herzog, H.; Hibi, T. Discrete polymatroids. J. Algebr. Combin. 2002, 16, 239–268. [Google Scholar] [CrossRef]
- Deshpande, P.; Roy, A.; Singh, A.; Van Tuyl, A. Fröberg’s Theorem, vertex splittability and higher independence complexes. arXiv 2023, arXiv:2311.02430. [Google Scholar]
- Moradi, S. Normal Rees algebras arising from vertex decomposable simplicial complexes. arXiv 2023, arXiv:2311.15135. [Google Scholar]
- Herzog, H.; Hibi, T. Monomial Ideals; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 260. [Google Scholar]
- Ficarra, A. Vector-spread monomial ideals and Eliahou–Kervaire type resolutions. J. Algebra 2023, 615, 170–204. [Google Scholar] [CrossRef]
- Mafi, A.; Naderi, D.; Saremi, H. Vertex decomposability and weakly polymatroidal ideals. arXiv 2022, arXiv:2201.06756. [Google Scholar]
- Crupi, M.; Ficarra, A. Minimal resolutions of vector-spread Borel ideals. Analele Stiintifice Ale Univ. Ovidius Constanta Ser. Mat. 2023, 31, 71–84. [Google Scholar]
- Bandari, S.; Herzog, J. Monomial localizations and polymatroidal ideals. Eur. J. Combin. 2013, 34, 752–763. [Google Scholar] [CrossRef]
- Ficarra, A. Shellability of componentwise discrete polymatroids. arXiv 2023, arXiv:2312.13006. [Google Scholar]
- Ficarra, A. Simon’s conjecture and the v-number of monomial ideals. arXiv 2023, arXiv:2309.09188. [Google Scholar]
- Herzog, H.; Hibi, T. Cohen-Macaulay polymatroidal ideals. Eur. J. Combin. 2006, 27, 513–517. [Google Scholar] [CrossRef]
- Dirac, G.A. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg; Springer: Berlin/Heidelberg, Germany, 1961; Volume 38, pp. 71–76. [Google Scholar]
- Fröberg, R. On Stanley-Reisner rings. In Topics in Algebra; Part 2 (Warsaw, 1988); Banach Center Publications: Warszawa, Poland, 1990; pp. 57–70. [Google Scholar]
- Herzog, J.; Rahimi, A. Bi-Cohen–Macaulay graphs. Electron. J. Combin. 2016, 23, #P1.1. [Google Scholar] [CrossRef] [PubMed]
- Grayson, D.R.; Stillman, M.E. Macaulay2, a Software System for Research in Algebraic Geometry. Available online: http://www.math.uiuc.edu/Macaulay2 (accessed on 5 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crupi, M.; Ficarra, A. Cohen–Macaulayness of Vertex Splittable Monomial Ideals. Mathematics 2024, 12, 912. https://doi.org/10.3390/math12060912
Crupi M, Ficarra A. Cohen–Macaulayness of Vertex Splittable Monomial Ideals. Mathematics. 2024; 12(6):912. https://doi.org/10.3390/math12060912
Chicago/Turabian StyleCrupi, Marilena, and Antonino Ficarra. 2024. "Cohen–Macaulayness of Vertex Splittable Monomial Ideals" Mathematics 12, no. 6: 912. https://doi.org/10.3390/math12060912
APA StyleCrupi, M., & Ficarra, A. (2024). Cohen–Macaulayness of Vertex Splittable Monomial Ideals. Mathematics, 12(6), 912. https://doi.org/10.3390/math12060912