Multivariate Structural Equation Modeling Techniques for Estimating Reliability, Measurement Error, and Subscale Viability When Using Both Composite and Subscale Scores in Practice
Abstract
:1. Introduction
2. Background
2.1. Partitioning of Observed Score Variance within Common Multivariate Designs
2.2. Multivariate ETE and CON SEMs
2.3. Deriving G Coefficients for More Restricted Universes of Generalization
2.4. Correcting Subscale Intercorrelation Coefficients for Multiple Sources of Measurement Error
2.5. Evaluating Subscale Added Value
2.6. Estimating Score Accuracy and Subscale Added Value When Changing Measurement Procedures
3. Motivation for and Purpose of the Study
4. Methods
Participants, Measures, and Procedure
5. Analyses
6. Results
6.1. Descriptive Statistics and Conventional Reliability Estimates
6.2. Model Fit
6.3. Partitioning of Total Observed Score Variance within the S-ETE and CON Designs
6.4. Item-Level Partitioning of Observed Score Variance within the CON Design
6.5. Disattenuated Correlation Coefficients
6.6. Subscale Added Value
6.7. Changing Numbers of Items and/or Occasions within the Multivariate Designs
7. Discussion
7.1. Overview
7.2. Model Fit
7.3. Score Accuracy and Partitioning of Variance
7.4. Disattenuated Correlation Coefficients
7.5. Subscale Added Value
7.6. Changing Measurement Procedures
7.7. Benefits of Using R with Multivariate Designs
8. Summary and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cronbach, L.J.; Rajaratnam, N.; Gleser, G.C. Theory of generalizability: A liberalization of reliability theory. Br. J. Stat. Psychol. 1963, 16, 137–163. [Google Scholar] [CrossRef]
- Cronbach, L.J.; Gleser, G.C.; Nanda, H.; Rajaratnam, N. The Dependability of Behavioral Measurements: Theory of Generalizability for Scores and Profiles; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Gleser, G.C.; Cronbach, L.J.; Rajaratnam, N. Generalizability of scores influenced by multiple sources of variance. Psychometrika 1965, 30, 395–418. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, N.; Cronbach, L.J.; Gleser, G.C. Generalizability of stratified-parallel tests. Psychometrika 1965, 30, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Shavelson, R.J.; Webb, N.M. Generalizability theory: 1973–1980. Brit. J. Math. Stat. Psy. 1981, 34, 133–166. [Google Scholar] [CrossRef]
- Shavelson, R.J.; Webb, N.M. Generalizability Theory: A Primer; Sage: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Shavelson, R.J.; Webb, N.M.; Rowley, G.L. Generalizability theory. Am. Psychol. 1989, 44, 922–932. [Google Scholar] [CrossRef]
- Brennan, R.L. Elements of Generalizability Theory (Revised Edition); American College Testing: Iowa City, IA, USA, 1992. [Google Scholar]
- Brennan, R.L. Generalizability theory. Educ. Meas.-Issues Pract. 1992, 11, 27–34. [Google Scholar] [CrossRef]
- Brennan, R.L. Generalizability Theory; Springer: New York, NY, USA, 2001. [Google Scholar]
- Brennan, R.L. Generalizability theory and classical test theory. Appl. Meas. Educ. 2010, 24, 1–21. [Google Scholar] [CrossRef]
- Bloch, R.; Norman, G. Generalizability theory for the perplexed: A practical introduction and guide: AMEE Guide No. 68. Med. Teach. 2012, 34, 960–992. [Google Scholar] [CrossRef] [PubMed]
- Vispoel, W.P.; Morris, C.A.; Kilinc, M. Applications of generalizability theory and their relations to classical test theory and structural equation modeling. Psychol. Methods 2018, 23, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Vispoel, W.P.; Morris, C.A.; Kilinc, M. Practical applications of generalizability theory for designing, evaluating, and improving psychological assessments. J. Pers. Assess. 2018, 100, 53–67. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Xu, G.; Schneider, W.S. Interrelationships between latent state-trait theory and generalizability theory in a structural equation modeling framework. Psychol. Methods 2022, 27, 773–803. [Google Scholar] [CrossRef] [PubMed]
- Vispoel, W.P.; Lee, H.; Hong, H. Analyzing multivariate generalizability theory designs within structural equation modeling frameworks [Teacher’s corner]. Struct. Equ. Model. 2023, 1–19, advance online publication. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Lee, H.; Hong, H.; Chen, T. Applying multivariate generalizability theory to psychological assessments. Psychol. Methods 2023, 1–23, advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Bimpeh, Y.; Pointer, W.; Smith, B.A.; Harrison, L. Evaluating human scoring using Generalizability Theory. Appl. Meas. Educ. 2020, 33, 198–209. [Google Scholar] [CrossRef]
- Choi, J.; Wilson, M.R. Modeling rater effects using a combination of Generalizability Theory and IRT. Psychol. Sci. 2018, 60, 53–80. [Google Scholar]
- Hurtz, G.M.; Hertz, N.R. How many raters should be used for establishing cutoff scores with the Angoff method? A Generalizability Theory study. Educ. Psychol. Meas. 1999, 59, 885–897. [Google Scholar] [CrossRef]
- Ten Hove, D.; Jorgensen, T.D.; var der Ark, L.A. Interrater reliability for multilevel data: A generalizability theory approach. Psychol. Methods 2022, 27, 650–666. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, M.; Culpepper, S.; Janssen, R.; González, J.; Molenaar, D. An evaluation of rater agreement indices using Generalizability Theory. In Quantitative Psychology; Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D., Eds.; The 82nd Annual Meeting of the Psychometric Society: Zurich, Switzerland, 2018; Volume 233, pp. 77–89. [Google Scholar]
- Andersen, S.A.W.; Nayahangan, L.J.; Park, Y.S.; Konge, L. Use of generalizability theory for exploring reliability of and sources of variance in assessment of technical skills: A systematic review and meta-analysis. Acad. Med. 2021, 96, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.A.W.; Park, Y.S.; Sørensen, M.S.; Konge, L. Reliable assessment of surgical technical skills is dependent on context: An exploration of different variables using Generalizability Theory. Acad. Med. 2020, 95, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.N.; Lau, J.N.; Shi, R.; Sapp, R.W.; Aalami, L.R.; Lee, E.W.; Tekian, A.; Park, Y.S. The utility of peers and trained raters in technical skill-based assessments a generalizability theory study. J. Surg. Educ. 2022, 79, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Blood, A.D.; Park, Y.S.; Lukas, R.V.; Brorson, J.R. Neurology objective structured clinical examination reliability using generalizability theory. Neurology 2015, 85, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Jogerst, K.M.; Eurboonyanun, C.; Park, Y.S.; Cassidy, D.; McKinley, S.K.; Hamdi, I.; Phitayakorn, R.; Petrusa, E.; Gee, D.W. Implementation of the ACS/ APDS Resident Skills Curriculum reveals a need for rater training: An analysis using generalizability theory. Am. J. Surg. 2021, 222, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Kreiter, C.D.; Wilson, A.B.; Humbert, A.J.; Wade, P.A. Examining rater and occasion influences in observational assessments obtained from within the clinical environment. Med. Educ. Online 2016, 21, 29279. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Thompson, M.S.; Hagler, D. Using generalizability theory to inform optimal design for a nursing performance assessment. Eval. Health Prof. 2019, 42, 297–327. [Google Scholar] [CrossRef]
- O’Neill, S.; O’Neill, L. Improving QST Reliability—More raters, tests, or occasions? A multivariate Generalizability study. J. Pain 2015, 16, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.J. Moving beyond Cronbach’s alpha and inter-rater reliability: A primer on Generalizability Theory for pharmacy education. Innov. Pharm. 2021, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Anthony, C.J.; Styck, K.M.; Volpe, R.J.; Robert, C.R.; Codding, R.S. Using many-facet Rasch measurement and Generalizability Theory to explore rater effects for Direct Behavior Rating–Multi-Item Scales. Sch. Psychol. 2023, 38, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.L.B.; Johnson, L.D. The use of generalizability theory to inform sampling of educator language used with preschoolers with autism spectrum disorder. J. Speech Lang. Hear. R. 2021, 64, 1748–1757. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Hebert, M.; Sandbank, M.P.; Harris, K.R. Assessing the writing achievement of young struggling writers: Application of generalizability theory. Learn. Disabil. Q. 2016, 39, 72–82. [Google Scholar] [CrossRef]
- Lakes, K.D.; Hoyt, W.T. Applications of Generalizability Theory to clinical child and adolescent psychology research. J. Clin. Child Adolesc. Psychol. 2009, 38, 144–165. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Smith, M.; Suen, H.K. The use of generalizability theory to estimate data reliability in single-subject observational research. Psychol. Sch. 2007, 44, 433–439. [Google Scholar] [CrossRef]
- Tanner, N.; Eklund, K.; Kilgus, S.P.; Johnson, A.H.; Bowman-Perrott, L. Generalizability of universal screening measures for behavioral and emotional risk. Sch. Psychol. Rev. 2018, 47, 3–17. [Google Scholar] [CrossRef]
- Atilgan, H. Reliability of essay ratings: A study on Generalizability Theory. Eurasian J. Educ. Res. 2019, 19, 1–18. [Google Scholar] [CrossRef]
- Mantzicopoulos, P.; French, B.F.; Patrick, H.; Watson, J.S.; Ahn, I. The stability of kindergarten teachers’ effectiveness: A generalizability study comparing the Framework For Teaching and the Classroom Assessment Scoring System. Educ. Assess. 2018, 23, 24–46. [Google Scholar] [CrossRef]
- Kachchaf, R.; Solano-Flores, G. Rater language background as a source of measurement error in the testing of English language learners. Appl. Meas. Educ. 2012, 25, 162–177. [Google Scholar] [CrossRef]
- Kim, Y. A G-Theory analysis of rater effect in ESL speaking assessment. Appl. Linguist. 2009, 30, 435–440. [Google Scholar] [CrossRef]
- Ohta, R.; Plakans, L.M.; Gebril, A. Integrated writing scores based on holistic and multi-trait scales: A generalizability analysis. Assess. Writ. 2018, 38, 21–36. [Google Scholar] [CrossRef]
- Van Hooijdonk, M.; Mainhard, T.; Kroesbergen, E.H.; Van Tartwijk, J. Examining the assessment of creativity with generalizability theory: An analysis of creative problem solving assessment tasks. Think. Ski. Creat. 2022, 43, 100994. [Google Scholar] [CrossRef]
- Bergee, M.J. Performer, rater, occasion, and sequence as sources of variability in music performance assessment. J. Res. Music Educ. 2007, 55, 344–358. [Google Scholar] [CrossRef]
- Lafave, M.R.; Butterwick, D.J. A generalizability theory study of athletic taping using the Technical Skill Assessment Instrument. J. Athl. Train. 2014, 49, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.R.; Deshon, R. Interrater correlations do not estimate the reliability of job performance ratings. Pers. Psychol. 2000, 53, 873–900. [Google Scholar] [CrossRef]
- Kane, M. Inferences about variance components and reliability-generalizability coefficients in the absence of random sampling. J. Educ. Meas. 2006, 39, 165–181. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Xu, G.; Kilinc, M. Expanding G-theory models to incorporate congeneric relationships: Illustrations using the Big Five Inventory. J. Pers. Assess. 2021, 104, 429–442. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Lee, H.; Xu, G.; Hong, H. Expanding bifactor models of psychological traits to account for multiple sources of measurement error. Psychol. Assess. 2022, 32, 1093–1111. [Google Scholar] [CrossRef] [PubMed]
- Vispoel, W.P.; Hong, H.; Lee, H. Benefits of doing generalizability theory analyses within structural equation modeling frameworks: Illustrations using the Rosenberg Self-Esteem Scale [Teacher’s corner]. Struct. Equ. Model. 2024, 31, 165–181. [Google Scholar] [CrossRef]
- Soto, C.J.; John, O.P. The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. J. Pers. Soc. Psychol. 2017, 113, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Le, H.; Schmidt, F.L.; Putka, D.J. The multifaceted nature of measurement artifacts and its implications for estimating construct-level relationships. Organ. Res. Methods 2009, 12, 165–200. [Google Scholar] [CrossRef]
- Schmidt, F.L.; Hunter, J.E. Measurement error in psychological research: Lessons from 26 research scenarios. Psychol. Methods 1996, 1, 199–223. [Google Scholar] [CrossRef]
- Schmidt, F.L.; Le, H.; Ilies, R. Beyond alpha: An empirical investigation of the effects of different sources of measurement error on reliability estimates for measures of individual differences constructs. Psychol. Methods 2003, 8, 206–224. [Google Scholar] [CrossRef] [PubMed]
- Thorndike, R.L. Reliability. In Educational Measurement; Lindquist, E.F., Ed.; American Council on Education: Washington, DC, USA, 1951; pp. 560–620. [Google Scholar]
- Steyer, R.; Ferring, D.; Schmitt, M.J. States and traits in psychological assessment. Eur. J. Psychol. Assess. 1992, 8, 79–98. [Google Scholar]
- Geiser, C.; Lockhart, G. A comparison of four approaches to account for method effects in latent state-trait analyses. Psychol. Methods 2012, 17, 255–283. [Google Scholar] [CrossRef] [PubMed]
- Cronbach, L.J.; Schönemann, P.; McKie, D. Alpha coefficients for stratified-parallel tests. Educ. Psychol. Meas. 1965, 25, 291–312. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Lee, H.; Chen, T.; Hong, H. Analyzing and comparing univariate, multivariate, and bifactor generalizability theory designs for hierarchically structured personality traits. J. Pers. Assess. 2023, 1–16, advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Spearman, C. Correlation calculated from faulty data. Brit. J. Psychol. 1910, 3, 271–295. [Google Scholar] [CrossRef]
- Morris, C.A. Optimal Methods for Disattenuating Correlation Coefficients under Realistic Measurement Conditions with Single-Form, Self-Report Instruments (Publication No. 27668419). Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2020. [Google Scholar]
- Vispoel, W.P.; Morris, C.A.; Kilinc, M. Using generalizability theory to disattenuate correlation coefficients for multiple sources of measurement error. Multivar. Behav. Res. 2018, 53, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Haberman, S.J. When can subscores have value? J. Educ. Behav. Stat. 2008, 33, 204–229. [Google Scholar] [CrossRef]
- Haberman, S.J.; Sinharay, S. Reporting of subscores using multidimensional item response theory. Psychometrika 2010, 75, 209–227. [Google Scholar] [CrossRef]
- Sinharay, S. Added value of subscores and hypothesis testing. J. Educ. Behav. Stat. 2019, 44, 25–44. [Google Scholar] [CrossRef]
- Feinberg, R.A.; Jurich, D.P. Guidelines for interpreting and reporting subscores. Educ. Meas.-Issues Pract. 2017, 36, 5–13. [Google Scholar] [CrossRef]
- Hjärne, M.S.; Lyrén, P.E. Group differences in the value of subscores: A fairness issue. Front. Educ. 2020, 5, 55. [Google Scholar] [CrossRef]
- Feinberg, R.A.; Wainer, H. A simple equation to predict a subscore’s value. Educ. Meas.-Issues Pract. 2014, 33, 55–56. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Lee, H.; Chen, T.; Hong, H. Extending applications of generalizability theory-based bifactor model designs. Psych 2023, 5, 545–575. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- McDonald, R.P. Test Theory: A Unified Approach; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1999. [Google Scholar]
- Bentler, P.M. Alpha-maximized factor analysis (alphamax): Its relation to alpha and canonical factor analysis. Psychometrika 1968, 33, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Brown, W. Some experimental results in the correlation of mental abilities. Brit. J. Psychol. 1910, 3, 296–322. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Yu, C.Y. Evaluating Cutoff Criteria of Model Fit Indices for Latent Variable Models with Binary and Continuous Outcomes; University of California: Los Angeles, CA, USA, 2002. [Google Scholar]
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Rosseel, Y.; Jorgensen, T.D.; De Wilde, L. Package ‘lavaan’. R Package Version (0.6-17). 2023. Available online: https://cran.r-project.org/web/packages/lavaan/lavaan.pdf (accessed on 10 February 2024).
- Preacher, K.J.; Selig, J.P. Advantages of Monte Carlo confidence intervals for indirect effects. Commun. Methods Meas. 2012, 6, 77–98. [Google Scholar] [CrossRef]
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. semTools: Useful Tools for Structural Equation Modeling. R Package Version 0.5-6. 2022. Available online: https://CRAN.R-project.org/package=semTools (accessed on 10 February 2024).
- Cronbach, L.J.; Shavelson, R.J. My current thoughts on coefficient alpha and successor procedures. Educ. Psychol. Meas. 2004, 64, 391–418. [Google Scholar] [CrossRef]
- Lord, F.M. Estimating test reliability. Educ. Psychol. Meas. 1955, 15, 325–336. [Google Scholar] [CrossRef]
- Jorgensen, T.D. How to estimate absolute-error components in structural equation models of generalizability theory. Psych 2021, 3, 113–133. [Google Scholar] [CrossRef]
- Marcoulides, G.A. Estimating variance components in generalizability theory: The covariance structure analysis approach. Struct. Equ. Model. 1996, 3, 290–299. [Google Scholar] [CrossRef]
- Raykov, T.; Marcoulides, G.A. Estimation of generalizability coefficients via a structural equation modeling approach to scale reliability evaluation. Int. J. Test. 2006, 6, 81–95. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Hong, H.; Lee, H.; Jorgensen, T.R. Analyzing complete generalizability theory designs using structural equation models. Appl. Meas. Educ. 2023, 36, 372–393. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Lee, H.; Chen, T.; Hong, H. Using structural equation modeling techniques to reproduce and extend ANOVA-based generalizability theory analyses for psychological assessments. Psych 2023, 5, 249–273. [Google Scholar] [CrossRef]
- Lee, H.; Vispoel, W.P. A robust indicator mean-based method for estimating generalizability theory absolute error indices within structural equation modeling frameworks. Psych 2024, 6, 401–425. [Google Scholar] [CrossRef]
- Deng, L.; Chan, W. Testing the difference between reliability coefficients alpha and omega. Educ. Psychol. Meas. 2017, 77, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Paulhus, D.L. Measurement and control of response bias. In Measures of Social Psychological Attitudes; Robinson, J.P., Shaver, P.R., Wrightsman, L.S., Eds.; Academic Press: San Diego, CA, USA, 1991; Volume 1, pp. 17–59. [Google Scholar]
- Zeng, B.; Wen, H.; Zhang, J. How does the valence of wording affect features of a scale? The method effects in the Undergraduate Learning Burnout Scale. Front. Psychol. 2020, 11, 585179. [Google Scholar] [CrossRef]
- Vispoel, W.P.; Lee, H.; Chen, T. Determining when subscale scores from assessment measures provide added value. Biomed. J. Sci. Tech. Res. 2023, 53, 45111–45113. [Google Scholar] [CrossRef]
- Ark, T.K. Ordinal Generalizability Theory Using an Underlying Latent Variable Framework. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2015. Available online: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0166304 (accessed on 21 November 2023).
- Vispoel, W.P.; Morris, C.A.; Kilinc, M. Using generalizability theory with continuous latent response variables. Psychol. Methods 2019, 24, 153–178. [Google Scholar] [CrossRef] [PubMed]
- Vispoel, W.P.; Lee, H.; Xu, G.; Hong, H. Integrating bifactor models into a generalizability theory structural equation modeling framework. J. Exp. Educ. 2023, 91, 718–738. [Google Scholar] [CrossRef]
- Brennan, R.L.; Kane, M.T. An index of dependability for mastery tests. J. Educ. Meas. 1977, 14, 277–289. [Google Scholar] [CrossRef]
- Brennan, R.L. Examining the dependability of scores. In R. A. Berk A Guide to Criterion-Referenced Test Construction; John Hopkins University Press: Baltimore, MD, USA, 1984; pp. 293–332. [Google Scholar]
- Kane, M.T.; Brennan, R.L. Agreement coefficients as indices of dependability for domain-referenced tests. Appl. Psychol. Meas. 1980, 4, 105–126. [Google Scholar] [CrossRef]
- Webb, N.M.; Shavelson, R.J.; Haertel, E.H. 4 reliability coefficients and generalizability theory. Handb. Stat. 2006, 26, 81–124. [Google Scholar]
- Vispoel, W.P.; Tao, S. A generalizability analysis of score consistency for the Balanced Inventory of Desirable Responding. Psychol. Assess. 2013, 25, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Vispoel, W.P.; Xu, G.; Schneider, W.S. Using parallel splits with self-report and other measures to enhance precision in generalizability theory analyses. J. Personal. Assess. 2022, 104, 303–319. [Google Scholar] [CrossRef] [PubMed]
Index | Composite Level | Subscale Level |
---|---|---|
Person, Universe score, or Trait VC | ||
Transient Error VC | ||
Specific-Factor Error VC | ||
Random-Response Error VC | ||
Total Observed Score VC | Person, Universe score, or Trait VC + Transient Error VC + Specific-Factor Error VC + Random-Response Error VC |
Index | Prophecy Formula |
---|---|
Generalizability/reliability coefficient (pio design) | |
For the composite generalizability/reliability coefficient, use the composite level variance components from Table 1. For the subscale generalizability/reliability coefficient, use the subscale level variance components from Table 1. = desired number of items, = desired number of occasions. | |
Generalizability/reliability coefficient (pi design) | |
For the composite generalizability/reliability coefficient, use the composite level variance components from Table 1. For the subscale generalizability/reliability coefficient, use the subscale level variance components from Table 1. = desired number of items, = desired number of occasions. | |
Generalizability/reliability coefficient (po design) | |
For the composite generalizability/reliability coefficient, use the composite level variance components from Table 1. For the subscale generalizability/reliability coefficient, use the subscale level variance components from Table 1. = desired number of items, = desired number of occasions. | |
Value-added ratio | |
where = reliability or generalizability coefficient for subscale j calculated using the preceding reliability/generalizability coefficient prophecy formula, = reliability or generalizability coefficient for the composite score calculated using the preceding reliability/generalizability coefficient prophecy formula, S = subscale, and is the unweighted sum of all estimated subscale true/universe score variances and covariances ( |
Occasion/Index | Composite/Subscale | ||||
---|---|---|---|---|---|
Extraversion | Assertiveness | Energy Level | Sociability | Subscale Average | |
Number of Items | 12 | 4 | 4 | 4 | 4 |
Time 1 | |||||
Mean: Scale (Item) | 39.823 (3.319) | 12.748 (3.187) | 14.239 (3.560) | 12.835 (3.209) | 13.274 (3.319) |
SD: Scale (Item) | 8.536 (0.711) | 3.355 (0.839) | 3.142 (0.786) | 3.932 (0.983) | 3.476 (0.869) |
Alpha | 0.843 | 0.737 | 0.655 | 0.771 | 0.721 |
Omega | 0.848 | 0.758 | 0.685 | 0.774 | 0.739 |
Time 2 | |||||
Mean: Scale (Item) | 39.987 (3.332) | 12.789 (3.197) | 14.249 (3.562) | 12.949 (3.237) | 13.329 (3.332) |
SD: Scale (Item) | 8.350 (0.696) | 3.325 (0.831) | 3.137 (0.784) | 3.767 (0.942) | 3.410 (0.852) |
Alpha | 0.850 | 0.733 | 0.700 | 0.791 | 0.741 |
Omega | 0.855 | 0.749 | 0.724 | 0.793 | 0.755 |
Test–retest | 0.898 | 0.823 | 0.847 | 0.896 | 0.855 |
Variance Component/Index | |||||||
---|---|---|---|---|---|---|---|
p | po | pi | pio,e | ||||
Scale/Item | Loading | Variance | Loading | Variance | Loading | Variance | Residual |
Simplified Essential Tau-Equivalent | |||||||
EXT VC | (0.470 + 0.400 + 0.689 + 2(0.424 + 0.359 + 0.251))/32 = 0.403 | (0.041 + 0.016 + 0.033 + 2(0.026 + 0.027 + 0.018))/32 = 0.026 | (0.411 + 0.479 + 0.554)/32 = 0.160 | (0.326 + 0.314 + 0.256)/32 = 0.100 | |||
ASS | 0.470 | 0.041 | |||||
Item 6 | 1 | 1 | 1 | 0.411 | 0.326 | ||
Item 21 | 1 | 1 | 1 | 0.411 | 0.326 | ||
Item 36 | 1 | 1 | 1 | 0.411 | 0.326 | ||
Item 51 | 1 | 1 | 1 | 0.411 | 0.326 | ||
Average | 1 | 1 | 1 | 0.411 | 0.326 | ||
VC | 0.470 = 0.470 | 0.041 = 0.041 | 0.411 = 0.411 | 0.326 | |||
ENE | 0.400 | 0.016 | |||||
Item 11 | 1 | 1 | 1 | 0.479 | 0.314 | ||
Item 26 | 1 | 1 | 1 | 0.479 | 0.314 | ||
Item 41 | 1 | 1 | 1 | 0.479 | 0.314 | ||
Item 56 | 1 | 1 | 1 | 0.479 | 0.314 | ||
Average | 1 | 1 | 1 | 0.479 | 0.314 | ||
VC | 0.400 = 0.400 | 0.016 = 0.016 | 0.479 = 0.479 | 0.314 | |||
SOC | 0.689 | 0.033 | |||||
Item 1 | 1 | 1 | 1 | 0.554 | 0.256 | ||
Item 16 | 1 | 1 | 1 | 0.554 | 0.256 | ||
Item 31 | 1 | 1 | 1 | 0.554 | 0.256 | ||
Item 46 | 1 | 1 | 1 | 0.554 | 0.256 | ||
Average | 1 | 1 | 1 | 0.554 | 0.256 | ||
VC | 0.689 = 0.689 | 0.033 = 0.033 | 0.554 = 0.554 | 0.256 | |||
Covariance | |||||||
ASS, ENE | 0.251 | 0.018 | |||||
ASS, SOC | 0.424 | 0.026 | |||||
ENE, SOC | 0.359 | 0.027 | |||||
Congeneric | |||||||
EXT VC | (0.487 + 0.401 + 0.632 + 2(0.228 + 0.377 + 0.383))/32 = 0.388 | (0.040 + 0.025 + 0.028 + 2(0.012 + 0.025 + 0.022))/32 = 0.023 | (0.358 + 0.438 + 0.569)/32 = 0.152 | (0.320 + 0.291 + 0.259)/32 = 0.097 | |||
ASS | 1 | 1 | |||||
Item 6 | 0.705 | 0.301 | 1 | 0.560 | 0.290 | ||
Item 21 | 0.940 | 0.264 | 1 | 0.109 | 0.210 | ||
Item 36 | 0.417 | 0.129 | 1 | 0.428 | 0.368 | ||
Item 51 | 0.728 | 0.108 | 1 | 0.337 | 0.411 | ||
Average | 0.698 | 1 | 0.201 | 1 | 1 | 0.358 | 0.320 |
VC | 1 = 0.487 | 1 = 0.040 | 0.358 = 0.358 | 0.320 | |||
ENE | 1 | 1 | |||||
Item 11 | 0.498 | 0.102 | 1 | 0.574 | 0.407 | ||
Item 26 | 0.383 | 0.003 | 1 | 0.941 | 0.352 | ||
Item 41 | 0.898 | 0.312 | 1 | 0.116 | 0.214 | ||
Item 56 | 0.753 | 0.212 | 1 | 0.121 | 0.192 | ||
Average | 0.633 | 0.157 | 1 | 0.438 | 0.291 | ||
VC | 1 = 0.401 | 1 = 0.025 | 0.438 = 0.438 | 0.291 | |||
SOC | 1 | 1 | |||||
Item 1 | 0.964 | 0.235 | 1 | 0.201 | 0.165 | ||
Item 16 | 0.664 | 0.136 | 1 | 0.819 | 0.299 | ||
Item 31 | 0.532 | 0.142 | 1 | 0.989 | 0.354 | ||
Item 46 | 1.019 | 0.155 | 1 | 0.266 | 0.220 | ||
Average | 0.795 | 0.167 | 1 | 0.569 | 0.259 | ||
VC | 1 = 0.632 | 1 = 0.028 | 0.569 = 0.569 | 0.259 | |||
Covariance | |||||||
ASS, ENE | 0.228 | 0.012 | |||||
ASS, SOC | 0.377 | 0.025 | |||||
ENE, SOC | 0.383 | 0.022 |
Design/Scale | Index | ||||
---|---|---|---|---|---|
Generalizability/ Reliability | SFE | TE | RRE | Total Error | |
Simplified Essential Tau-Equivalent | |||||
Extraversion (composite) | 0.816 (0.770, 0.855) | 0.081 (0.067, 0.099) | 0.052 (0.019, 0.087) | 0.050 (0.043, 0.059) | 0.184 (0.145, 0.230) |
Assertiveness | 0.676 (0.613, 0.729) | 0.148 (0.119, 0.181) | 0.060 (0.023, 0.096) | 0.117 (0.099, 0.139) | 0.324 (0.271, 0.387) |
Energy Level | 0.652 (0.584, 0.709) | 0.195 (0.158, 0.239) | 0.026 (−0.007, 0.059) | 0.128 (0.107, 0.152) | 0.348 (0.291, 0.416) |
Sociability | 0.746 (0.691, 0.790) | 0.150 (0.117, 0.189) | 0.035 (0.014, 0.058) | 0.069 (0.058, 0.083) | 0.254 (0.210, 0.309) |
Mean (subscales) | 0.691 | 0.164 | 0.040 | 0.105 | 0.309 |
Congeneric | |||||
Extraversion (composite) | 0.819 (0.773, 0.855) | 0.080 (0.066, 0.096) | 0.050 (0.023, 0.088) | 0.051 (0.044, 0.060) | 0.181 (0.145, 0.227) |
Assertiveness | 0.699 (0.640, 0.748) | 0.129 (0.103, 0.157) | 0.058 (0.028, 0.099) | 0.115 (0.097, 0.135) | 0.301 (0.252, 0.360) |
Energy Level | 0.659 (0.596, 0.712) | 0.180 (0.148, 0.216) | 0.041 (0.015, 0.078) | 0.120 (0.101, 0.141) | 0.341 (0.288, 0.404) |
Sociability | 0.729 (0.670, 0.777) | 0.164 (0.128, 0.206) | 0.032 (0.013, 0.060) | 0.075 (0.062, 0.090) | 0.271 (0.223, 0.330) |
Mean (subscales) | 0.696 | 0.158 | 0.044 | 0.103 | 0.304 |
Simplified Essential Tau-Equivalent | |||||
Extraversion (composite) | 0.868 (0.844, 0.887) | 0.132 (0.113, 0.156) | |||
Assertiveness | 0.735 (0.688, 0.774) | 0.265 (0.226, 0.312) | |||
Energy Level | 0.677 (0.618, 0.725) | 0.323 (0.275, 0.382) | |||
Sociability | 0.781 (0.734, 0.819) | 0.219 (0.181, 0.266) | |||
Mean (subscales) | 0.731 | 0.269 | |||
Congeneric | |||||
Extraversion (composite) | 0.869 (0.846, 0.889) | 0.131 (0.111, 0.154) | |||
Assertiveness | 0.757 (0.716, 0.793) | 0.243 (0.207, 0.284) | |||
Energy Level | 0.700 (0.651, 0.743) | 0.300 (0.257, 0.349) | |||
Sociability | 0.761 (0.710, 0.805) | 0.239 (0.195, 0.290) | |||
Mean (subscales) | 0.739 | 0.261 | |||
Simplified Essential Tau-Equivalent | |||||
Extraversion (composite) | 0.897 (0.859, 0.932) | 0.103 (0.068, 0.141) | |||
Assertiveness | 0.823 (0.780, 0.862) | 0.177 (0.138, 0.220) | |||
Energy Level | 0.847 (0.806, 0.883) | 0.153 (0.117, 0.194) | |||
Sociability | 0.895 (0.868, 0.919) | 0.105 (0.081, 0.132) | |||
Mean (subscales) | 0.855 | 0.145 | |||
Congeneric | |||||
Extraversion (composite) | 0.899 (0.859, 0.928) | 0.101 (0.072, 0.141) | |||
Assertiveness | 0.827 (0.783, 0.863) | 0.173 (0.137, 0.217) | |||
Energy Level | 0.839 (0.795, 0.873) | 0.161 (0.127, 0.205) | |||
Sociability | 0.893 (0.862, 0.916) | 0.107 (0.084, 0.138) | |||
Mean (subscales) | 0.853 | 0.147 |
Subscale/ Item | Index/Proportion of Variance | ||||
---|---|---|---|---|---|
Trait | SFE | TE | RRE | Total Error | |
Assertiveness | |||||
Item 6 | 0.346 (0.253, 0.443) | 0.390 (0.297, 0.478) | 0.063 (0.029, 0.110) | 0.202 (0.149, 0.255) | 0.654 (0.557, 0.747) |
Item 21 | 0.694 (0.599, 0.782) | 0.085 (0.004, 0.166) | 0.055 (0.017, 0.114) | 0.165 (0.121, 0.211) | 0.306 (0.218, 0.401) |
Item 36 * | 0.176 (0.113, 0.248) | 0.433 (0.347, 0.513) | 0.017 (0.001, 0.049) | 0.373 (0.302, 0.446) | 0.824 (0.752, 0.887) |
Item 51 * | 0.411 (0.317, 0.509) | 0.261 (0.173, 0.347) | 0.009 (0.000, 0.034) | 0.319 (0.240, 0.395) | 0.589 (0.491, 0.683) |
Energy Level | |||||
Item 11 * | 0.200 (0.126, 0.286) | 0.463 (0.358, 0.556) | 0.008 (0.000, 0.043) | 0.328 (0.253, 0.403) | 0.800 (0.714, 0.874) |
Item 26 * | 0.102 (0.047, 0.175) | 0.653 (0.568, 0.726) | 0.000 (0.000, 0.010) | 0.245 (0.189, 0.299) | 0.898 (0.825, 0.953) |
Item 41 | 0.653 (0.567, 0.733) | 0.094 (0.024, 0.163) | 0.079 (0.029, 0.153) | 0.174 (0.119, 0.229) | 0.347 (0.267, 0.433) |
Item 56 | 0.613 (0.526, 0.694) | 0.131 (0.061, 0.202) | 0.049 (0.018, 0.093) | 0.207 (0.158, 0.259) | 0.387 (0.306, 0.474) |
Sociability | |||||
Item 1 | 0.688 (0.605, 0.765) | 0.148 (0.079, 0.219) | 0.041 (0.015, 0.079) | 0.122 (0.085, 0.162) | 0.312 (0.235, 0.395) |
Item 16 * | 0.280 (0.185, 0.385) | 0.519 (0.413, 0.616) | 0.012 (0.002, 0.028) | 0.190 (0.151, 0.229) | 0.720 (0.615, 0.815) |
Item 31 * | 0.172 (0.100, 0.259) | 0.601 (0.504, 0.684) | 0.012 (0.002, 0.030) | 0.215 (0.171, 0.261) | 0.828 (0.741, 0.900) |
Item 46 | 0.670 (0.594, 0.741) | 0.172 (0.103, 0.242) | 0.015 (0.002, 0.042) | 0.142 (0.110, 0.177) | 0.330 (0.259, 0.406) |
Mean (Positive) | 0.611 | 0.170 | 0.050 | 0.169 | 0.389 |
Mean (Negative) | 0.224 | 0.489 | 0.010 | 0.278 | 0.776 |
Mean (Overall) | 0.418 | 0.330 | 0.030 | 0.224 | 0.582 |
Correlation Coefficient | ||
---|---|---|
Design/Subscales | Observed r | Disattenuated r |
Simplified Essential Tau-Equivalent | ||
Assertiveness & Sociability | 0.528 (0.452, 0.597) | 0.745 (0.659, 0.825) |
Energy Level & Sociability | 0.476 (0.398, 0.547) | 0.683 (0.593, 0.768) |
Assertiveness & Energy Level | 0.385 (0.297, 0.465) | 0.580 (0.464, 0.687) |
Congeneric | ||
Assertiveness & Sociability | 0.485 (0.413, 0.557) | 0.680 (0.600, 0.760) |
Energy Level & Sociability | 0.528 (0.465, 0.589) | 0.761 (0.693, 0.828) |
Assertiveness & Energy Level | 0.350 (0.272, 0.428) | 0.516 (0.413, 0.617) |
Design/Scale | Index | ||
---|---|---|---|
PRMSE (Subscale) | PRMSE (Composite) | VAR | |
Simplified Essential Tau-Equivalent | |||
Assertiveness | 0.676 | 0.628 | 1.077 |
Energy Level | 0.652 | 0.574 | 1.135 |
Sociability | 0.746 | 0.707 | 1.054 |
Mean (subscale) | 0.691 | 0.636 | 1.089 |
Congeneric | |||
Assertiveness | 0.699 | 0.574 | 1.218 |
Energy Level | 0.659 | 0.598 | 1.101 |
Sociability | 0.729 | 0.719 | 1.014 |
Mean (subscale) | 0.696 | 0.630 | 1.111 |
Simplified Essential Tau-Equivalent | |||
Assertiveness | 0.735 | 0.666 | 1.104 |
Energy Level | 0.677 | 0.622 | 1.090 |
Sociability | 0.781 | 0.756 | 1.033 |
Mean (subscale) | 0.731 | 0.681 | 1.076 |
Congeneric | |||
Assertiveness | 0.757 | 0.608 | 1.245 |
Energy Level | 0.700 | 0.631 | 1.110 |
Sociability | 0.761 | 0.765 | 0.995 |
Mean (subscale) | 0.739 | 0.668 | 1.117 |
Simplified Essential Tau-Equivalent | |||
Assertiveness | 0.823 | 0.612 | 1.346 |
Energy Level | 0.847 | 0.553 | 1.531 |
Sociability | 0.895 | 0.705 | 1.270 |
Mean (subscale) | 0.855 | 0.623 | 1.383 |
Congeneric | |||
Assertiveness | 0.827 | 0.568 | 1.458 |
Energy Level | 0.839 | 0.577 | 1.454 |
Sociability | 0.893 | 0.713 | 1.253 |
Mean (subscale) | 0.853 | 0.619 | 1.388 |
Design/Scale | Design/Index | |||
---|---|---|---|---|
S-ETE | CON | |||
Generalizability | VAR | Reliability | VAR | |
Extraversion | 0.911 | 0.914 | ||
Assertiveness | 0.836 | 1.192 | 0.851 | 1.331 |
Energy Level | 0.821 | 1.280 | 0.824 | 1.235 |
Sociability | 0.872 | 1.104 | 0.862 | 1.075 |
Mean (subscale) | 0.843 | 1.192 | 0.846 | 1.214 |
Extraversion | 0.930 | 0.930 | ||
Assertiveness | 0.847 | 1.189 | 0.861 | 1.325 |
Energy Level | 0.808 | 1.214 | 0.824 | 1.220 |
Sociability | 0.877 | 1.084 | 0.864 | 1.056 |
Mean (subscale) | 0.844 | 1.162 | 0.850 | 1.200 |
Extraversion | 0.946 | 0.947 | ||
Assertiveness | 0.903 | 1.401 | 0.906 | 1.515 |
Energy Level | 0.917 | 1.574 | 0.913 | 1.501 |
Sociability | 0.945 | 1.272 | 0.943 | 1.257 |
Mean (subscale) | 0.922 | 1.401 | 0.921 | 1.425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vispoel, W.P.; Lee, H.; Chen, T. Multivariate Structural Equation Modeling Techniques for Estimating Reliability, Measurement Error, and Subscale Viability When Using Both Composite and Subscale Scores in Practice. Mathematics 2024, 12, 1164. https://doi.org/10.3390/math12081164
Vispoel WP, Lee H, Chen T. Multivariate Structural Equation Modeling Techniques for Estimating Reliability, Measurement Error, and Subscale Viability When Using Both Composite and Subscale Scores in Practice. Mathematics. 2024; 12(8):1164. https://doi.org/10.3390/math12081164
Chicago/Turabian StyleVispoel, Walter Peter, Hyeryung Lee, and Tingting Chen. 2024. "Multivariate Structural Equation Modeling Techniques for Estimating Reliability, Measurement Error, and Subscale Viability When Using Both Composite and Subscale Scores in Practice" Mathematics 12, no. 8: 1164. https://doi.org/10.3390/math12081164
APA StyleVispoel, W. P., Lee, H., & Chen, T. (2024). Multivariate Structural Equation Modeling Techniques for Estimating Reliability, Measurement Error, and Subscale Viability When Using Both Composite and Subscale Scores in Practice. Mathematics, 12(8), 1164. https://doi.org/10.3390/math12081164