A Robust Hermitian and Skew-Hermitian Based Multiplicative Splitting Iterative Method for the Continuous Sylvester Equation
Abstract
:1. Introduction
2. Multiplicative Splitting Iterations
2.1. Traditional MSI Method
- Given an initial guess ,
- For until convergence, do
- end
2.2. MSI Method for the Sylvester Equation
- Given an initial guess ,
- For until convergence, do
- Solve
- Solve
- end
- Given an initial guess ,
- For until convergence, do
- Solve system
- Solve system
- end
- For
- For
- end
- end
2.3. Using Multiplicative Splitting as a Preconditioner
2.4. Convergence Analysis
3. Numerical Results
4. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Datta, B. Numerical Methods for Linear Control Systems; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control, 2nd ed.; Springer: London, UK, 2000. [Google Scholar]
- Baur, U.; Benner, P. Cross-Gramian based model reduction for data-sparse systems. Electron. Trans. Numer. Anal. 2008, 31, 256–270. [Google Scholar]
- Anderson, B.D.O.; Agathoklis, P.; Jury, E.I.; Mansour, M. Stability and the matrix Lyapunov equation for discrete 2-dimensional systems. IEEE Trans. Circuits Syst. 1986, 33, 261–267. [Google Scholar] [CrossRef]
- Bouhamidi, A.; Jbilou, K. Sylvester Tikhonov-Regularization methods in image restoration. J. Comput. Appl. Math. 2007, 206, 86–98. [Google Scholar] [CrossRef]
- Bai, Z.-Z. On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations. J. Comput. Math. 2011, 29, 185–198. [Google Scholar]
- Beik, F.P.A.; Salkuyeh, D.K. Weighted versions of Gl-FOM and Gl-GMRES for solving general coupled linear matrix equations. Comput. Math. Math. Phys. 2015, 55, 1606–1618. [Google Scholar] [CrossRef]
- Dehghan, M.; Hajarian, M. Two algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of Sylvester matrix equations. Appl. Math. Lett. 2011, 24, 444–449. [Google Scholar] [CrossRef]
- Hajarian, M. Solving the general Sylvester discrete-time periodic matrix equations via the gradient based iterative method. Appl. Math. Lett. 2016, 52, 87–95. [Google Scholar] [CrossRef]
- Jbilou, K. An Arnoldi based algorithm for large algebraic Riccati equations. Appl. Math. Lett. 2006, 19, 437–444. [Google Scholar] [CrossRef]
- Simoncini, V. Computational methods for linear matrix equations. SIAM Rev. 2016, 58, 377–441. [Google Scholar] [CrossRef]
- Dehghan, M.; Shirilord, A. The double-step scale splitting method for solving complex Sylvester matrix equation. Comp. Appl. Math. 2019, 38, 444–449. [Google Scholar] [CrossRef]
- El Guennouni, A.; Jbilou, K.; Riquet, J. Block Krylov subspace methods for solving large Sylvester equation. Numer. Algorithms 2002, 29, 75–96. [Google Scholar] [CrossRef]
- El Guennouni, A.; Jbilou, K.; Sadok, H. A block version of BiCGSTAB for linear systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 2004, 16, 243–256. [Google Scholar]
- Hajarian, M. Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations. J. Frankl. Inst. 2016, 353, 1168–1185. [Google Scholar] [CrossRef]
- Hajarian, M. Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Frankl. Inst. 2013, 350, 3328–3341. [Google Scholar] [CrossRef]
- Khorsand Zak, M.; Toutounian, F. Nested splitting CG-like iterative method for solving the continuous Sylvester equation and preconditioning. Adv. Comput. Math. 2014, 40, 865–880. [Google Scholar] [CrossRef]
- Khorsand Zak, M.; Toutounian, F. An iterative method for solving the continuous Sylvester equation by emphasizing on the skew-Hermitian parts of the coefficient matrices. Int. J. Comput. Math. 2017, 94, 633–649. [Google Scholar] [CrossRef]
- Tohidi, E.; Khorsand Zak, M. A new matrix approach for solving second-order linear matrix partial differential equations. Mediterr. J. Math. 2016, 13, 1353–1376. [Google Scholar] [CrossRef]
- Bouhamidi, A.; Elbouyahyaoui, L.; Heyouni, M. The constant solution method for solving large-scale differential Sylvester matrix equations with time invariant coefficients. Numer. Algorithms 2024, 96, 449–488. [Google Scholar] [CrossRef]
- Chu, E.K.W.; Hou, L.; Szyld, D.B.; Zhou, J. Numerical solution of singular Sylvester equations. J. Comput. Appl. Math. 2024, 436, 115426. [Google Scholar] [CrossRef]
- Sasaki, N.; Chansangiam, P. Modified Jacobi-Gradient Iterative Method for Generalized Sylvester Matrix Equation. Symmetry 2020, 12, 1831. [Google Scholar] [CrossRef]
- Shafiei, S.G.; Hajarian, M. An iterative method based on ADMM for solving generalized Sylvester matrix equations. J. Frankl. Inst. 2022, 15, 8155–8170. [Google Scholar] [CrossRef]
- Yu, S.; Peng, J.; Tang, Z.; Peng, Z. Iterative methods to solve the constrained Sylvester equation. AIMS Math. 2023, 8, 21531–21553. [Google Scholar] [CrossRef]
- Chu, E.K.W.; Szyld, D.B.; Zhou, J. Numerical solution of singular Lyapunov equations. Numer. Linear Algebra Appl. 2021, 28, e2381. [Google Scholar] [CrossRef]
- Du, X.; Iqbal, K.I.B.; Uddin, M.M.; Hossain, M.T.; Shuzan, M.N.I. A computationally effective time-restricted stability preserving H2-optimal model order reduction approach. Results Control. Optim. 2023, 11, 100217. [Google Scholar] [CrossRef]
- Jiang, W.; Ge, S.S.; Hu, Q.; Li, D. Sliding-Mode Control for Perturbed MIMO Systems With Time-Synchronized Convergence. IEEE Trans. Cybern. 2024, 54, 4375–4388. [Google Scholar] [CrossRef]
- Ma, L.; Chang, R.; Han, M.; Jiao, Y. Explicit solutions of conjugate, periodic, time-varying Sylvester equations. J. Inequal. Appl. 2023, 2023, 133. [Google Scholar] [CrossRef]
- Sarumi, I.O.; Furati, K.M.; Khaliq, A.Q.M. Efficient second-order accurate exponential time differencing for time-fractional advection–diffusion–reaction equations with variable coefficients. Math. Comput. Simul. 2025, 230, 20–38. [Google Scholar] [CrossRef]
- Bartels, R.H.; Stewart, G.W. Algorithm 432: Solution of the matrix equation AX + XB = C. Circ. Syst. Signal Proc. 1994, 13, 820–826. [Google Scholar] [CrossRef]
- Golub, G.H.; Nash, S.; Van Loan, C. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Trans. Contr. 1979, AC-24, 909–913. [Google Scholar] [CrossRef]
- Benner, P.; Li, R.C.; Truhar, N. On the ADI method for Sylvester equations. J. Comput. Appl. Math. 2009, 233, 1035–1045. [Google Scholar] [CrossRef]
- Hu, D.Y.; Reichel, L. Krylov-subspace methods for the Sylvester equation. Linear Algebra Appl. 1992, 172, 283–313. [Google Scholar] [CrossRef]
- Salkuyeh, D.K.; Toutounian, F. New approaches for solving large Sylvester equations. Appl. Math. Comput. 2006, 173, 9–18. [Google Scholar]
- Khorsand Zak, M.; Toutounian, F. Nested splitting conjugate gradient method for matrix equation AXB = C and preconditioning. Comput. Math. Appl. 2013, 66, 269–278. [Google Scholar] [CrossRef]
- Bai, Z.-Z. On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 2003, 154, 195–214. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003. [Google Scholar]
- Evans, D.J.; Wan, C.R. A preconditioned conjugate gradient method for AX + XB = C. Int. J. Comput. Math. 1993, 49, 207–219. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Yin, J.-F.; Su, Y.-F. A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 2006, 24, 539–552. [Google Scholar]
- Kelley, C.T. Iterative Methods for Linear and Nonlinear Equations; No. 16, Frontiers in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1995. [Google Scholar]
- Lütkepohl, H. Handbook of Matrices; John Wiley & Sons Press: England, UK, 1996. [Google Scholar]
- Krukier, L.A.; Martynova, T.S.; Bai, Z.-Z. Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems. J. Comput. Appl. Math. 2009, 232, 3–16. [Google Scholar] [CrossRef]
- Wang, L.; Bai, Z.-Z. Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. BIT Numer. Math. 2004, 44, 363–386. [Google Scholar] [CrossRef]
- Duff, I.S.; Grimes, R.G.; Lewis, J.G. User’s Guide for the Harwell-Boeing Sparse Matrix Collection; Technical Report RAL-92-086; Rutherford Applton Laboratory: Chilton, UK, 1992. [Google Scholar]
- Dwivedi, H.K. A fast difference scheme for the multi-term time fractional advection diffusion equation with a non-linear source term. Chin. J. Phys. 2024, 85, 86–103. [Google Scholar] [CrossRef]
- Lin, J.; Reutskiy, S.; Zhang, Y.; Sun, Y.; Lu, J. The novel analytical–numerical method for multi-dimensional multi-term time-fractional equations with general boundary conditions. Mathematics 2023, 11, 929. [Google Scholar] [CrossRef]
- Rahman, G.; Wahid, F.; Gómez-Aguilar, J.F.; Ali, A. Analysis of multi-term arbitrary order implicit differential equations with variable type delay. Phys. Scr. 2024, 99, 115246. [Google Scholar] [CrossRef]
- Santra, S. Analysis of a higher-order scheme for multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels. Numer. Algorithms 2024. [Google Scholar] [CrossRef]
Method | Out-Itr | CPU Time | Res-Norm |
---|---|---|---|
MSI | 7 | 10.54 | 2.0887 × 10−6 |
NSCG | 7 | 8.19 | 2.1050 × 10−6 |
HSS | 298 | 75.32 | 3.2107 × 10−6 |
GMRES(10) | 151 | 40.56 | 3.0400 × 10−6 |
BiCGSTAB | 255 | 17.91 | 2.4616 × 10−6 |
Method | Out-Itr | CPU Time | Res-Norm |
---|---|---|---|
MSI | 7 | 5.66 | 4.3252 × 10−5 |
NSCG | 9 | 6.18 | 7.7746 × 10−5 |
HSS | 21 | 39.82 | 8.7083 × 10−5 |
GMRES(10) | 3 | 2.84 | 2.3509 × 10−6 |
BiCGSTAB | 14 | 2.67 | 9.7977 × 10−5 |
Method | Out-Itr | CPU Time | Res-Norm |
---|---|---|---|
MSI | 5 | 16.43 | 0.0029 |
NSCG | 8 | 21.65 | 0.0070 |
HSS | 99 | 326.71 | 0.0288 |
GMRES(10) | 20 | 49.87 | 0.0027 |
BiCGSTAB | 75 | 16.22 | 0.0028 |
Method | Out-Itr | CPU Time | Res-Norm |
---|---|---|---|
MSI | 34 | 78.437 | 1.57 × 10−4 |
NSCG | 64 | 121.265 | 2.61 × 10−4 |
HSS | >5000 | >1000 | 2.32 |
GMRES(10) | >5000 | >1000 | 247.77 |
BiCGSTAB | † | † | NaN |
Method | Out-Itr | CPU Time | Res-Norm |
---|---|---|---|
BiCGSTAB | † | † | NaN |
MSI-BiCGSTAB | 2 | 113.51 | 9.0749 × 10−6 |
NSCG-BiCGSTAB | 4 | 263.92 | 5.6612 × 10−6 |
HSS-BiCGSTAB | † | † | NaN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorsand Zak, M.; Abbaszadeh Shahri, A. A Robust Hermitian and Skew-Hermitian Based Multiplicative Splitting Iterative Method for the Continuous Sylvester Equation. Mathematics 2025, 13, 318. https://doi.org/10.3390/math13020318
Khorsand Zak M, Abbaszadeh Shahri A. A Robust Hermitian and Skew-Hermitian Based Multiplicative Splitting Iterative Method for the Continuous Sylvester Equation. Mathematics. 2025; 13(2):318. https://doi.org/10.3390/math13020318
Chicago/Turabian StyleKhorsand Zak, Mohammad, and Abbas Abbaszadeh Shahri. 2025. "A Robust Hermitian and Skew-Hermitian Based Multiplicative Splitting Iterative Method for the Continuous Sylvester Equation" Mathematics 13, no. 2: 318. https://doi.org/10.3390/math13020318
APA StyleKhorsand Zak, M., & Abbaszadeh Shahri, A. (2025). A Robust Hermitian and Skew-Hermitian Based Multiplicative Splitting Iterative Method for the Continuous Sylvester Equation. Mathematics, 13(2), 318. https://doi.org/10.3390/math13020318