A Generalized Autonomous Power Plant Fault Detection Model Using Deep Feature Extraction and Ensemble Machine Learning
Abstract
:1. Introduction
2. Proposed Autonomous Fault Detection Methodology and Theoretical Foundations
2.1. Description of the Proposed Methodology
2.2. Theoretical Background of Applied Algorithms
- (a)
- PCA
- (b)
- XGBoost
- (c)
- SVM
- (d)
- Artificial neural networks (ANNs)
- (e)
- CAE
3. Implementation of the Proposed Model on Real-World Steam Power Plant Data
3.1. Data Acquisition
3.1.1. Steam Turbine Motor-Driven Oil Pump Fault
3.1.2. Boiler Waterwall Tube Leakage
3.2. Data Preprocessing
3.3. Model Development and Evaluation
4. Case Studies
4.1. Turbine Fault Detection
4.2. Boiler Fault Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eguchi, S.; Takayabu, H.; Lin, C. Sources of Inefficient Power Generation by Coal-Fired Thermal Power Plants in China: A Metafrontier DEA Decomposition Approach. Renew. Sustain. Energy Rev. 2021, 138, 110562. [Google Scholar] [CrossRef]
- Khalil, E. Steam Power Plants. WIT Trans. State Art Sci. Eng. 2008, 42, 99–139. [Google Scholar]
- Tumanovskii, A.G.; Shvarts, A.L.; Somova, E.V.; Verbovetskii, E.K.; Avrutskii, G.D.; Ermakova, S.V.; Kalugin, R.N.; Lazarev, M.V. Review of the Coal-Fired, over-Supercritical and Ultra-Supercritical Steam Power Plants. Therm. Eng. 2017, 64, 83–96. [Google Scholar] [CrossRef]
- Omosanya, A.J.; Akinlabi, E.T.; Okeniyi, J.O. Overview for Improving Steam Turbine Power Generation Efficiency. J. Phys. Conf. Ser. 2019, 1378, 032040. [Google Scholar] [CrossRef]
- Che, C.; Qian, G.; Yang, X.; Liu, X. Fatigue Damage of Waterwall Tubes in a 1000 MW USC Boiler. In Proceedings of the 7th International Conference on Fracture Fatigue and Wear, Gent, Belgium, 9–10 July 2018; Abdel Wahab, M., Ed.; Lecture Notes in Mechanical Engineering. Springer: Singapore, 2019; pp. 314–324, ISBN 978-981-13-0410-1. [Google Scholar]
- Singh, P.M.; Mahmood, J. Stress Assisted Corrosion of Waterwall Tubes in Recovery Boiler Tubes: Failure Analysis. J. Fail. Anal. Prev. 2007, 7, 361–370. [Google Scholar] [CrossRef]
- Barella, S.; Bellogini, M.; Boniardi, M.; Cincera, S. Failure Analysis of a Steam Turbine Rotor. Eng. Fail. Anal. 2011, 18, 1511–1519. [Google Scholar] [CrossRef]
- Gałka, T. Vibration-Based Diagnostics of Steam Turbines. Mech. Eng. 2012, 34, 315–340. [Google Scholar]
- Wang, C.; Zhang, D.; Xie, Y. Research on Fault Diagnosis of Steam Turbine Rotor Unbalance and Parallel Misalignment Based on Numerical Simulation and Convolutional Neural Network. In Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, Virtual, Online, 7–11 June 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85017, p. V008T22A019. [Google Scholar]
- Niu, J.; Lu, S.; Liu, Y.; Zhao, J.; Wang, Q. Intelligent Bearing Fault Diagnosis Based on Tacholess Order Tracking for a Variable-Speed AC Electric Machine. IEEE Sens. J. 2019, 19, 1850–1861. [Google Scholar] [CrossRef]
- Dias, C.G.; Pereira, F.H. Broken Rotor Bars Detection in Induction Motors Running at Very Low Slip Using a Hall Effect Sensor. IEEE Sens. J. 2018, 18, 4602–4613. [Google Scholar] [CrossRef]
- Rao, S.G.; Lohith, S.; Gowda, P.C.; Singh, A.; Rekha, S.N. Fault Analysis of Induction Motor. In Proceedings of the 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Tamilnadu, India, 11–13 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Khalid, S.; Song, J.; Raouf, I.; Kim, H.S. Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques. Mathematics 2023, 11, 1767. [Google Scholar] [CrossRef]
- Haghighat-Shishavan, B.; Firouzi-Nerbin, H.; Nazarian-Samani, M.; Ashtari, P.; Nasirpouri, F. Failure Analysis of a Superheater Tube Ruptured in a Power Plant Boiler: Main Causes and Preventive Strategies. Eng. Fail. Anal. 2019, 98, 131–140. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Liu, C.-Y.; Huang, C.-M. Intelligent Approaches for Vibration Fault Diagnosis of Steam Turbine-Generator Sets. In Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013), 12–14 December 2013, Kaohsiung, Taiwan; Juang, J., Chen, C.-Y., Yang, C.-F., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 585–591. [Google Scholar]
- Kang, S.J.; Moon, J.C.; Choi, D.-H.; Choi, S.S.; Woo, H.G. A Distributed and Intelligent System Approach for the Automatic Inspection of Steam-Generator Tubes in Nuclear Power Plants. IEEE Trans. Nucl. Sci. 1998, 45, 1713–1722. [Google Scholar] [CrossRef]
- Lu, B.; Upadhyaya, B.R. Monitoring and Fault Diagnosis of the Steam Generator System of a Nuclear Power Plant Using Data-Driven Modeling and Residual Space Analysis. Ann. Nucl. Energy 2005, 32, 897–912. [Google Scholar] [CrossRef]
- Lu, B.; Upadhyaya, B.R.; Perez, R.B. Structural Integrity Monitoring of Steam Generator Tubing Using Transient Acoustic Signal Analysis. IEEE Trans. Nucl. Sci. 2005, 52, 484–493. [Google Scholar]
- Li-Juan, G.; Chun-Hui, Z.; Min, H.; Yong, Z. Vibration Analysis of the Steam Turbine Shafting Caused by Steam Flow. ℡KOMNIKA Indones. J. Electr. Eng. 2013, 11, 4422–4432. [Google Scholar] [CrossRef]
- Caruso, F.T. Thermal Imaging for the Nuclear Power Industry. In Proceedings of the Thermosense VIII: Thermal Infrared Sensing for Diagnostics and Control, Cambridge, MA, USA, 17–19 September 1985; SPIE: Bellingham, WA, USA, 1986; Volume 581, pp. 122–127. [Google Scholar]
- Li, F.; Upadhyaya, B.R.; Coffey, L.A. Model-Based Monitoring and Fault Diagnosis of Fossil Power Plant Process Units Using Group Method of Data Handling. ISA Trans. 2009, 48, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Odgaard, P.F.; Lin, B.; Jorgensen, S.B. Observer and Data-Driven-Model-Based Fault Detection in Power Plant Coal Mills. IEEE Trans. Energy Convers. 2008, 23, 659–668. [Google Scholar] [CrossRef]
- David, N.P.; Swaminathan, B. Modeling, Identification and Detection of Faults in Industrial Boiler. In Proceedings of the 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 10–12 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 197–201. [Google Scholar]
- Sivathanu, A.K.; Vaidyanathan, K.; Murugan, N. Extended Kalman Filter Based Tube Leak Detection for Thermal Power Plant Reheater. In Proceedings of the AIP Conference Proceedings, Advances in Mechanical Engineering (ICAME-2022), Chennai, India, 24–26 March 2022; AIP Publishing: Melville, NY, USA, 2023; Volume 2813. [Google Scholar]
- Afgan, N.; Coelho, P.J.; Carvalho, M.G. Boiler Tube Leakage Detection Expert System. Appl. Therm. Eng. 1998, 18, 317–326. [Google Scholar] [CrossRef]
- Holbert, K.E.; Lin, K. Nuclear Power Plant Instrumentation Fault Detection Using Fuzzy Logic. Sci. Technol. Nucl. Install. 2012, 2012, 421070. [Google Scholar] [CrossRef]
- Choi, H.; Kim, C.-W.; Kwon, D. Data-Driven Fault Diagnosis Based on Coal-Fired Power Plant Operating Data. J. Mech. Sci. Technol. 2020, 34, 3931–3936. [Google Scholar] [CrossRef]
- Choi, M.-G.; Kim, J.-Y.; Jeong, I.; Kim, Y.-H.; Kim, J.-M. A Real-Time Monitoring System for Boiler Tube Leakage Detection. In Proceedings of the Hybrid Intelligent Systems, Porto, Portugal, 13–15 December 2018; Madureira, A.M., Abraham, A., Gandhi, N., Varela, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 106–114. [Google Scholar]
- Ukil, A.; Braendle, H.; Krippner, P. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sens. J. 2012, 12, 885–892. [Google Scholar] [CrossRef]
- Yu, J.; Yoo, J.; Jang, J.; Park, J.H.; Kim, S. A Novel Plugged Tube Detection and Identification Approach for Final Super Heater in Thermal Power Plant Using Principal Component Analysis. Energy 2017, 126, 404–418. [Google Scholar] [CrossRef]
- Swiercz, M.; Mroczkowska, H. Multiway PCA for Early Leak Detection in a Pipeline System of a Steam Boiler—Selected Case Studies. Sensors 2020, 20, 1561. [Google Scholar] [CrossRef] [PubMed]
- Ajami, A.; Daneshvar, M. Data Driven Approach for Fault Detection and Diagnosis of Turbine in Thermal Power Plant Using Independent Component Analysis (ICA). Int. J. Electr. Power Energy Syst. 2012, 43, 728–735. [Google Scholar] [CrossRef]
- Khalid, S.; Lim, W.; Kim, H.S.; Oh, Y.T.; Youn, B.D.; Kim, H.-S.; Bae, Y.-C. Intelligent Steam Power Plant Boiler Waterwall Tube Leakage Detection via Machine Learning-Based Optimal Sensor Selection. Sensors 2020, 20, 6356. [Google Scholar] [CrossRef] [PubMed]
- Jaswanth, C.; Shiva, G.P.; Raj, G.N.S.R.; M, T. Pipeline Leak Detection System Using Machine Learning. In Proceedings of the 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), Bangalore, India, 28–29 June 2024; pp. 1–6. [Google Scholar]
- Liang, Z.; Zhang, L.; Wang, X. A Novel Intelligent Method for Fault Diagnosis of Steam Turbines Based on T-SNE and XGBoost. Algorithms 2023, 16, 98. [Google Scholar] [CrossRef]
- Que, Z.; Xu, Z. A Data-Driven Health Prognostics Approach for Steam Turbines Based on Xgboost and Dtw. IEEE Access 2019, 7, 93131–93138. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, M.; Lin, Z.; Chen, X.; Huang, Y. Improved Genetic Algorithm and XGBoost Classifier for Power Transformer Fault Diagnosis. Front. Energy Res. 2021, 9, 745744. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S. A Brief Overview of Delamination Localization in Laminated Composites. Multiscale Sci. Eng. 2022, 4, 102–110. [Google Scholar] [CrossRef]
- Azad, M.M.; Shah, A.U.R.; Prabhakar, M.N.; Kim, H.S. Deep Learning-based Fracture Mode Determination in Composite Laminates. J. Comput. Struct. Eng. Inst. Korea 2024, 37, 225–232. [Google Scholar] [CrossRef]
- Kim, H.; Ko, J.U.; Na, K.; Lee, H.; Kim, H.; Son, J.; Yoon, H.; Youn, B.D. Opt-TCAE: Optimal Temporal Convolutional Auto-Encoder for Boiler Tube Leakage Detection in a Thermal Power Plant Using Multi-Sensor Data. Expert Syst. Appl. 2023, 215, 119377. [Google Scholar] [CrossRef]
- Zhang, H.; Zuo, Z.; Li, Z.; Ma, L.; Liang, S.; Lü, Q.; Zhou, H. Leak Detection for Natural Gas Gathering Pipelines under Corrupted Data via Assembling Twin Robust Autoencoders. Process Saf. Environ. Prot. 2024, 188, 492–513. [Google Scholar] [CrossRef]
- Zhai, J.; Ye, J.; Cao, Y. An Unsupervised Fault Warning Method Based on Hybrid Information Gain and a Convolutional Autoencoder for Steam Turbines. Energies 2024, 17, 4098. [Google Scholar] [CrossRef]
- Barrera, J.M.; Reina, A.; Mate, A.; Trujillo, J.C. Fault Detection and Diagnosis for Industrial Processes Based on Clustering and Autoencoders: A Case of Gas Turbines. Int. J. Mach. Learn. Cybern. 2022, 13, 3113–3129. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, X. One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 6347–6358. [Google Scholar] [CrossRef]
- Maćkiewicz, A.; Ratajczak, W. Principal Components Analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
- Kurita, T. Principal Component Analysis (PCA). In Computer Vision; Ikeuchi, K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1013–1016. ISBN 978-3-030-63415-5. [Google Scholar]
- Chen, T.; He, T.; Benetsy, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Extreme Gradient Boosting. R Package Version 1.3.2.1. 2021. Available online: https://cran.r-project.org/web/packages/xgboost/index.html (accessed on 19 January 2025).
- Cherif, I.L.; Kortebi, A. On Using eXtreme Gradient Boosting (XGBoost) Machine Learning Algorithm for Home Network Traffic Classification. In Proceedings of the 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019; pp. 1–6. [Google Scholar]
- Guenther, N.; Schonlau, M. Support Vector Machines. Stata J. Promot. Commun. Stat. Stata 2016, 16, 917–937. [Google Scholar] [CrossRef]
- Valkenborg, D.; Rousseau, A.-J.; Geubbelmans, M.; Burzykowski, T. Support Vector Machines. Am. J. Orthod. Dentofacial Orthop. 2023, 164, 754–757. [Google Scholar] [CrossRef]
- Jing, C.; Hou, J. SVM and PCA Based Fault Classification Approaches for Complicated Industrial Process. Neurocomputing 2015, 167, 636–642. [Google Scholar] [CrossRef]
- Zou, J.; Han, Y.; So, S.-S. Overview of Artificial Neural Networks. In Artificial Neural Networks; Livingstone, D.J., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2008; Volume 458, pp. 14–22. ISBN 978-1-58829-718-1. [Google Scholar]
- Chang, H.-S.; Tsai, J.-L. Predict Elastic Properties of Fiber Composites by an Artificial Neural Network. Multiscale Sci. Eng. 2023, 5, 53–61. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2011, Espoo, Finland, 14–17 June 2011; Honkela, T., Duch, W., Girolami, M., Kaski, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59. [Google Scholar]
- Pawar, K.; Attar, V.Z. Assessment of Autoencoder Architectures for Data Representation. In Deep Learning: Concepts and Architectures; Pedrycz, W., Chen, S.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 101–132. ISBN 978-3-030-31756-0. [Google Scholar]
- Mazziotta, M.; Pareto, A. Normalization Methods for Spatio-temporal Analysis of Environmental Performance: Revisiting the Min–Max Method. Environmetrics 2022, 33, e2730. [Google Scholar] [CrossRef]
- Raju, V.N.G.; Lakshmi, K.P.; Jain, V.M.; Kalidindi, A.; Padma, V. Study the Influence of Normalization/Transformation Process on the Accuracy of Supervised Classification. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 729–735. [Google Scholar]
- Kim, S.; Azad, M.M.; Song, J.; Kim, H. Delamination Detection Framework for the Imbalanced Dataset in Laminated Composite Using Wasserstein Generative Adversarial Network-Based Data Augmentation. Appl. Sci. 2023, 13, 11837. [Google Scholar] [CrossRef]
- Khalid, S.; Hwang, H.; Kim, H.S. Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant. Mathematics 2021, 9, 2814. [Google Scholar] [CrossRef]
Model | Training Time (ms) | Testing Time (ms) | Model Size (Mbs) |
---|---|---|---|
ANN | 1973.44 | 179.04 | 0.06 |
CAE-SVM-LK | 2807.62 | 237.05 | 1.59 |
CAE-SVM-PK | 2807.62 | 238.05 | 1.60 |
CAE-SVM-RK | 2806.62 | 239.05 | 1.59 |
CAE-XGBoost | 2823.62 | 239.05 | 1.67 |
Model | Health State | Accuracy (%) | Precision (%) | Recall (%) | F-1 Score (%) |
---|---|---|---|---|---|
ANN | Healthy | 86.21 | 100.00 | 86.10 | 92.59 |
Faulty | 100.00 | 87.88 | 100.00 | 93.55 | |
CAE-SVM-LK | Healthy | 93.10 | 100.00 | 93.10 | 96.43 |
Faulty | 100.00 | 93.55 | 100.00 | 96.67 | |
CAE-SVM-PK | Healthy | 93.10 | 100.00 | 93.10 | 96.43 |
Faulty | 100.00 | 93.55 | 100.00 | 96.67 | |
CAE-SVM-RK | Healthy | 86.21 | 100.00 | 86.10 | 92.59 |
Faulty | 100.00 | 87.88 | 100.00 | 93.55 | |
CAE-XGBoost | Healthy | 93.10 | 100.00 | 93.10 | 96.43 |
Faulty | 100.00 | 93.55 | 100.00 | 96.67 |
Model | Accuracy (%) |
---|---|
SVM [59] | 88.10 |
KNN [59] | 86.80 |
Naive Bayes [59] | 93.00 |
ANN | 93.10 |
CAE-SVM-LK | 96.55 |
CAE-SVM-PK | 95.55 |
CAE-SVM-RK | 93.10 |
CAE-XGBoost | 96.55 |
Model | Health State | Accuracy (%) | Precision (%) | Recall (%) | F-1 Score (%) |
---|---|---|---|---|---|
CAE-SVM-LK | Healthy | 92.00 | 92.00 | 92.00 | 92.00 |
Leakage | 92.00 | 92.00 | 92.00 | 92.00 | |
CAE-SVM-PK | Healthy | 85.87 | 94.71 | 85.87 | 90.07 |
Leakage | 95.20 | 87.07 | 95.20 | 90.06 | |
CAE-XGBoost | Healthy | 92.53 | 93.78 | 92.53 | 93.15 |
Leakage | 93.87 | 92.63 | 93.87 | 93.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, S.; Azad, M.M.; Kim, H.S. A Generalized Autonomous Power Plant Fault Detection Model Using Deep Feature Extraction and Ensemble Machine Learning. Mathematics 2025, 13, 342. https://doi.org/10.3390/math13030342
Khalid S, Azad MM, Kim HS. A Generalized Autonomous Power Plant Fault Detection Model Using Deep Feature Extraction and Ensemble Machine Learning. Mathematics. 2025; 13(3):342. https://doi.org/10.3390/math13030342
Chicago/Turabian StyleKhalid, Salman, Muhammad Muzammil Azad, and Heung Soo Kim. 2025. "A Generalized Autonomous Power Plant Fault Detection Model Using Deep Feature Extraction and Ensemble Machine Learning" Mathematics 13, no. 3: 342. https://doi.org/10.3390/math13030342
APA StyleKhalid, S., Azad, M. M., & Kim, H. S. (2025). A Generalized Autonomous Power Plant Fault Detection Model Using Deep Feature Extraction and Ensemble Machine Learning. Mathematics, 13(3), 342. https://doi.org/10.3390/math13030342