Multiscale 1D-CNN for Damage Severity Classification and Localization Based on Lamb Wave in Laminated Composites
Abstract
:1. Introduction
2. Proposed Methodology
2.1. Material Preparation
2.2. Lamb Wave Signal Acquisition
2.3. Data Preprocessing
2.4. ANNs
2.5. SVM
2.6. Fully Convolutional Networks (FCNs)
2.7. MS-1D-CNN
2.8. Performance Evaluation Metrics
3. Damage Severity Classification
3.1. Performance Comparison with Various Models
3.2. Damage Localization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Hasan, M.; Zhao, J.; Jiang, Z. Micromanufacturing of composite materials: A review. Int. J. Extrem. Manuf. 2019, 1, 12004. [Google Scholar] [CrossRef]
- Singh, H.; Brar, G.S.; Kumar, H.; Aggarwal, V. A review on metal matrix composite for automobile applications. Mater. Today Proc. 2020, 43, 320–325. [Google Scholar] [CrossRef]
- Salama, A.; El-Sakhawy, M. Polysaccharides/propolis composite as promising materials with biomedical and packaging applications: A review. Biomass Convers. Biorefinery 2022, 14, 4555–4565. [Google Scholar] [CrossRef]
- Chi, H.; He, W.; Zhao, D.; Ma, R.; Zhang, Y.; Jiang, Z. Recent progress of dielectric polymer composites for bionics. Sci. China Mater. 2023, 66, 22–34. [Google Scholar] [CrossRef]
- Cao, H.; Ma, Y.; Wu, L.; Yu, L.; Elbadry, E.A.; Yang, W.; Huang, X.; Yan, X. Effect of fiber breakage position on the mechanical performance of unidirectional carbon fiber/epoxy composites. Rev. Adv. Mater. Sci. 2021, 60, 352–364. [Google Scholar] [CrossRef]
- Kidangan, R.T.; Krishnamurthy, C.V.; Balasubramaniam, K. Identification of the fiber breakage orientation in carbon fiber reinforced polymer composites using induction thermography. NDT E Int. 2021, 122, 102498. [Google Scholar] [CrossRef]
- Humer, C.; Höll, S.; Kralovec, C.; Schagerl, M. Damage identification using wave damage interaction coefficients predicted by deep neural networks. Ultrasonics 2022, 124, 106743. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Miao, Y.; Park, G.; Flynn, E. Compressive laser scanning with full steady state wavefield for structural damage detection. Mech. Syst. Signal Process. 2022, 169, 108626. [Google Scholar] [CrossRef]
- Giannakeas, I.N.; Khodaei, Z.S.; Aliabadi, F.M.H.H. Effect of detection and localization uncertainty on damage size estimation using guided wave based SHM. Procedia Struct. Integr. 2024, 52, 655–666. [Google Scholar] [CrossRef]
- Ullah, S.; Ijjeh, A.A.; Kudela, P. Deep learning approach for delamination identification using animation of Lamb waves. Eng. Appl. Artif. Intell. 2023, 117, 105520. [Google Scholar] [CrossRef]
- Wang, J.; Schmitz, M.; Jacobs, L.J.; Qu, J. Deep learning-assisted locating and sizing of a coating delamination using ultrasonic guided waves. Ultrasonics 2024, 141, 107351. [Google Scholar] [CrossRef] [PubMed]
- Ijjeh, A.A.; Kudela, P. Deep learning-based segmentation using full wavefield processing for delamination identification: A comparative study. Mech. Syst. Signal Process. 2022, 168, 108671. [Google Scholar] [CrossRef]
- Pineda Allen, J.C.; Ng, C.T. Damage detection in composite laminates using nonlinear guided wave mixing. Compos. Struct. 2023, 311, 116805. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, B.; Liu, X.; Yu, Y.; Guo, J.; Qing, X. Lamb wave-based damage assessment for CFRP composite structures using a CHMM-based damage localization algorithm and a damage quantitative expression. Mech. Syst. Signal Process. 2023, 184, 109750. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Xu, H.; Yang, L.; Ma, S.; Wu, Z. Phased array system for damage detection in plate-like structures based on single Lamb wave mode extraction. J. Aerosp. Eng. 2023, 36, 04023004. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, Y.; Cui, X.; Huang, Y.; Qing, X. A heterogeneous decision voting-based transfer domain adaptation method for damage localization of CFRP composite structures. Mech. Syst. Signal Process. 2025, 224, 112015. [Google Scholar] [CrossRef]
- Cha, Y.J.; Ali, R.; Lewis, J.; Büyük, O. Deep learning-based structural health monitoring. Autom. Constr. 2024, 161, 105328. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Tian, T.; Deng, D.; Hu, M.; Ma, J.; Gao, D.; Zhang, J.; Ma, S.; Yang, L.; et al. A review in guided-ultrasonic-wave-based structural health monitoring: From fundamental theory to machine learning techniques. Ultrasonics 2023, 133, 107014. [Google Scholar] [CrossRef] [PubMed]
- Perfetto, D.; Rezazadeh, N.; Aversano, A.; De Luca, A.; Lamanna, G. Composite panel damage classification based on guided waves and machine learning: An experimental approach. Appl. Sci. 2023, 13, 10017. [Google Scholar] [CrossRef]
- Jalali, S.S.; Mahzoon, M.; Mohammadi, H. Identification of damage properties of glass/epoxy laminates using machine learning models. Int. J. Impact Eng. 2023, 177, 104510. [Google Scholar] [CrossRef]
- Dabetwar, S.; Ekwaro-Osire, S.; Dias, J.P. Damage classification of composites based on analysis of Lamb wave signals using machine learning. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2021, 7, 011002. [Google Scholar] [CrossRef]
- Viotti, I.D.; Gomes, G.F. Delamination identification in sandwich composite structures using machine learning techniques. Comput. Struct. 2023, 280, 106990. [Google Scholar] [CrossRef]
- Lim, D.K.; Mustapha, K.B.; Pagwiwoko, C.P. Delamination detection in composite plates using random forests. Compos. Struct. 2021, 278, 114676. [Google Scholar] [CrossRef]
- Rajeswari, D.; Khalaf, O.I.; Srinivasan, R.; Pushpalatha, M.; Hamam, H. Structural health monitoring of aircraft through prediction of delamination using machine learning. PeerJ Comput. Sci. 2024, 10, e1955. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, L.; Song, R.; Peng, C.; Wu, X.; Wei, J.; Jiang, M.; Sui, Q.; Zhang, L. Damage localization in composite structures based on Lamb wave and modular artificial neural network. Sens. Actuators Phys. 2024, 377, 115644. [Google Scholar] [CrossRef]
- Migot, A.; Saaudi, A.; Giurgiutiu, V. Delamination depth detection in composite plates using the Lamb wave technique based on convolutional neural networks. Sensors 2024, 24, 3118. [Google Scholar] [CrossRef]
- Lee, I.Y.; Jang, J.; Bin Park, Y. Advanced structural health monitoring in carbon fiber-reinforced plastic using real-time self-sensing data and convolutional neural network architectures. Mater. Des. 2022, 224, 111348. [Google Scholar] [CrossRef]
- Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. Fully convolutional networks for structural health monitoring through multivariate time series classification. Adv. Model. Simul. Eng. Sci. 2020, 7, 38. [Google Scholar] [CrossRef]
- Parziale, M.; Lomazzi, L.; Rastin, Z.; Giglio, M.; Cadini, F. Unsupervised damage localization in composite plates using Lamb waves and conditional generative adversarial networks. Procedia Struct. Integr. 2024, 52, 551–559. [Google Scholar] [CrossRef]
- Khan, A.; Kim, H.S. Damage assessment of laminated composites using unsupervised autonomous features. J. Thermoplast. Compos. Mater. 2024, 37, 2123–2148. [Google Scholar] [CrossRef]
- Sawant, S.; Sethi, A.; Banerjee, S.; Tallur, S. Unsupervised learning framework for temperature compensated damage identification and localization in ultrasonic guided wave SHM with transfer learning. Ultrasonics 2023, 130, 106931. [Google Scholar] [CrossRef] [PubMed]
- Lomazzi, L.; Junges, R.; Giglio, M.; Cadini, F. Unsupervised data-driven method for damage localization using guided waves. Mech. Syst. Signal Process. 2024, 208, 111038. [Google Scholar] [CrossRef]
- Sattarifar, A.; Nestorović, T. Damage localization and characterization using one-dimensional convolutional neural network and a sparse network of transducers. Eng. Appl. Artif. Intell. 2022, 115, 105273. [Google Scholar] [CrossRef]
- Zong, S.; Wang, S.; Luo, Z.; Wu, X.; Zhang, H.; Ni, Z. Robust damage detection and localization under complex environmental conditions using singular value decomposition-based feature extraction and one-dimensional convolutional neural network. Chin. J. Mech. Eng. 2023, 36, 61. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, L.; Tao, J. An improved deep convolutional neural network with multiscale convolution kernels for fault diagnosis of rolling bearing. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1043, 052021. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Wang, D.; Wu, J.; Zhao, H. An adaptive multiscale fully convolutional network for bearing fault diagnosis under noisy environments. Measurement 2023, 216, 112993. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, Y.; Wang, Y.; Wu, M.; Zhang, F.; Qing, X. Complex CFRP damage detection with dual multiscale 1DCNNs and self-selective fusion technique of guided waves. Compos. Struct. 2024, 335, 117993. [Google Scholar] [CrossRef]
- Song, R.; Sun, L.; Gao, Y.; Peng, C.; Wu, X.; Lv, S.; Wei, J.; Jiang, M. Global-local feature cross-fusion network for ultrasonic guided wave-based damage localization in composite structures. Sens. Actuators Phys. 2023, 362, 114659. [Google Scholar] [CrossRef]
- Khurshid, H.; Mohammed, B.S.; Bheel, N.; Cahyadi, W.A.; Mukhtar, H. Study of factors affecting the magnetic sensing capability of shape memory alloys for non-destructive evaluation of cracks in concrete: Using response surface methodology (RSM) and artificial neural network (ANN) approaches. Heliyon 2024, 10, e35772. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Zhao, J.; Ji, H.; Qiu, J.; Wu, W.; Yang, P. Local wavenumber estimation for small damages based on artificial neural network. NDT E Int. 2023, 138, 102866. [Google Scholar] [CrossRef]
- Santosa, B. Multiclass Classification with cross entropy-support vector machines. Procedia Comput. Sci. 2015, 72, 345–352. [Google Scholar] [CrossRef]
- Nelon, C.M. Detection of delaminations in carbon fiber reinforced polymers embedded with Terfenol-D particles using machine learning. Ph.D. Thesis, Clemson University, Clemson, CA, USA, 2020. [Google Scholar]
- Usmankhujaev, S.; Ibrokhimov, B.; Baydadaev, S.; Kwon, J. Time series classification with inception FCN. Sensors 2021, 22, 157. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Du, J.; Li, S.; Long, Y.; Liang, D.; Liu, Y.; Wang, Y. Multi-scale feature fusion convolutional neural networks for fault diagnosis of electromechanical actuator. Appl. Sci. 2023, 13, 8689. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhang, S. Multiscale convolutional neural networks with attention for plant species recognition. Comput. Intell. Neurosci. 2021, 2021, 5529905. [Google Scholar] [CrossRef]
- Roy, A.M. An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces. Biomed. Signal Process. Control. 2022, 74, 103496. [Google Scholar] [CrossRef]
- Kim, G.; Park, Y.M.; Yoon, H.J.; Choi, J. A multi-kernel and multi-scale learning based deep ensemble model for predicting recurrence of non-small cell lung cancer. PeerJ Comput. Sci 2023, 9, e1311. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.M.; Raouf, I.; Sohail, M.; Kim, H.S. Structural health monitoring of laminated composites using lightweight transfer learning. Machines 2024, 12, 589. [Google Scholar] [CrossRef]
- Kalimullah, N.M.M.M.; Shelke, A.; Habib, A. A probabilistic framework for source localization in anisotropic composite using transfer learning based multi-fidelity physics informed neural network (mfPINN). Mech. Syst. Signal Process. 2023, 197, 110360. [Google Scholar] [CrossRef]
Layer | Output Shape | Parameters |
---|---|---|
Input layer | (None, 6000, 1) | 0 |
Conv1 | (None, 6000, 32) | 128 |
Conv2 | (None, 6000, 64) | 348 |
Conv3 | (None, 6000, 128) | 1024 |
Pool1 | (None, 3000, 32) | 0 |
Pool2 | (None, 3000, 64) | 0 |
Pool3 | (None, 3000, 128) | 0 |
Concatenate | (None, 3000, 224) | 0 |
Conv4 | (None, 3000, 128) | 200,832 |
Pool4 | (None, 1500, 128) | 0 |
Flatten | (None, 192,000) | 0 |
Dense1 | (None, 512) | 98,304,512 |
Dropout | (None, 512) | 0 |
Dense2 | (None, 4) | 2052 |
Total parameters: 98,508,932, Trainable parameters: 98,508,932, Non-trainable parameters: 0 |
Health State | Classifier | Evaluation Metrics | |||
---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | ||
D1 | SVM | 0.50 | 0.55 | 0.50 | 0.53 |
ANN | 0.82 | 0.90 | 0.82 | 0.86 | |
FCN | 0.92 | 0.90 | 0.92 | 0.91 | |
MS-1D-CNN | 0.94 | 0.90 | 0.94 | 0.92 | |
D2 | SVM | 0.72 | 0.49 | 0.72 | 0.58 |
ANN | 0.85 | 0.82 | 0.85 | 0.84 | |
FCN | 0.89 | 0.88 | 0.92 | 0.91 | |
MS-1D-CNN | 0.89 | 0.93 | 0.94 | 0.94 | |
D3 | SVM | 0.68 | 0.88 | 0.68 | 0.77 |
ANN | 0.90 | 0.87 | 0.90 | 0.88 | |
FCN | 0.91 | 0.90 | 0.93 | 0.92 | |
MS-1D-CNN | 0.94 | 0.93 | 0.94 | 0.94 | |
H | SVM | 0.74 | 1.00 | 0.74 | 0.85 |
ANN | 0.99 | 0.97 | 0.99 | 0.98 | |
FCN | 0.93 | 1.00 | 0.93 | 0.96 | |
MS-1D-CNN | 0.97 | 1.00 | 0.97 | 0.99 |
Model | |||
---|---|---|---|
SVM | 15.80 | 519.74 | 0.87 |
ANN | 12.34 | 324.77 | 0.90 |
FCN | 13.75 | 400.10 | 0.91 |
MS-1D-CNN | 10.57 | 306.29 | 0.93 |
Actual Location (mm) | Predicted Location for D1 (mm) | Estimated Error (mm) | Predicted Location for D2 (mm) | Estimated Error (mm) | Predicted Location for D3 (mm) | Estimated Error (mm) | ||||
---|---|---|---|---|---|---|---|---|---|---|
67 | 83 | 72.66 | 79.42 | 6.70 | 66.97 | 88.86 | 5.86 | 64.8 | 84.03 | 2.43 |
67 | 154 | 84.55 | 143.09 | 20.66 | 66.62 | 157.5 | 3.52 | 66.63 | 149.93 | 4.09 |
67 | 226 | 66.45 | 213.68 | 12.33 | 73.19 | 200.5 | 26.24 | 65.31 | 225.35 | 1.81 |
157 | 83 | 149.99 | 80.33 | 7.50 | 152.1 | 91.84 | 10.11 | 155.83 | 78.13 | 5.01 |
157 | 154 | 132.67 | 133.34 | 31.92 | 146.3 | 141.92 | 16.14 | 166.72 | 148.51 | 11.16 |
157 | 226 | 162.25 | 228.81 | 5.95 | 158.78 | 237.52 | 11.66 | 152.03 | 221.21 | 6.90 |
247 | 83 | 239.27 | 89.37 | 10.02 | 221.35 | 77.54 | 26.22 | 241.16 | 88.63 | 8.11 |
247 | 154 | 222.23 | 158.24 | 25.13 | 242.07 | 141.33 | 13.60 | 248.67 | 157.72 | 4.08 |
247 | 226 | 241.19 | 216.12 | 11.46 | 230.7 | 221.17 | 17.00 | 248.96 | 224.17 | 2.68 |
Average error (mm) | 14.63 | Average error (mm) | 14.48 | Average error (mm) | 5.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munyaneza, O.; Sohn, J.W. Multiscale 1D-CNN for Damage Severity Classification and Localization Based on Lamb Wave in Laminated Composites. Mathematics 2025, 13, 398. https://doi.org/10.3390/math13030398
Munyaneza O, Sohn JW. Multiscale 1D-CNN for Damage Severity Classification and Localization Based on Lamb Wave in Laminated Composites. Mathematics. 2025; 13(3):398. https://doi.org/10.3390/math13030398
Chicago/Turabian StyleMunyaneza, Olivier, and Jung Woo Sohn. 2025. "Multiscale 1D-CNN for Damage Severity Classification and Localization Based on Lamb Wave in Laminated Composites" Mathematics 13, no. 3: 398. https://doi.org/10.3390/math13030398
APA StyleMunyaneza, O., & Sohn, J. W. (2025). Multiscale 1D-CNN for Damage Severity Classification and Localization Based on Lamb Wave in Laminated Composites. Mathematics, 13(3), 398. https://doi.org/10.3390/math13030398