Scalar Field Source Teleparallel Robertson–Walker F(T) Gravity Solutions
Abstract
:1. Introduction
2. Summary of Teleparallel Gravity and Field Equations
2.1. Teleparallel Gravity Theory
2.2. Teleparallel Robertson–Walker Spacetime Geometry
- : ,
- : and ,
- : and .
2.3. Scalar Field Source Conservation Law Solutions
- Cosmological constant : This is an intermediate limit between the two previous and main types of DE, where . A constant scalar field source will directly lead to this case, according to Equation (16).
3. k = 0 Cosmological Solutions
- Power law general: For and , we find
- Power law special: For , we find
- Logarithmic: For a field defined as , we find
- Exponential: For , we find
- : Contracting universe. This is a “Big Crunch”-type scenario for a large -parameter scenario.
- : Static universe. This is the limit between expanding and contracting universe scenarios.
- : This is slow and controlled universe expansion, but a non-inflationary scenario.
- : This is linear universe expansion and the limit between slow and fast universe expansion scenarios.
- : The is fast, inflationary and controlled universe expansion. This is a plausible dark energy quintessence case because it is an inflationary scenario.
- or : This is very fast and uncontrolled universe expansion. This strong inflationary case is so far the best phantom dark energy scenario description and leads to “Big Rip” singularity after a determined time delay.
4. k = −1 Cosmological Solutions
- Equation (34), by setting and a power-law scalar field , yields new analytical solutions for the following subcases:
- (a)
- :
- (b)
- :
There are several other possible solutions; these can be obtained by setting other values of , p and/or other scalar field expressions inside the general expression of Equation (34). However, we can expect that such cases will yield more significant expressions of . - : Equation (32) becomesEquation (31) for the solution becomesEquation (38) yields new analytical solutions for the following cases:
- (a)
- General Power law :
- (b)
- Special Power law :
- (c)
- Logarithmic :
- (d)
- Exponential :There is no general solution for Equation (42). However, there are specific solutions:
- :
- :
There are several possible new solutions for other values of and using Equation (42).
There are additional possible new solutions from the Equation (38) integral with other types of scalar field sources. - By using a power-law scalar field and setting , Equation (46) yields new analytical solutions for some subcases:
- (a)
- :
- (b)
- :
There are several other possible solutions by setting other values of , p and/or other scalar field expressions. However, we can expect that such cases will yield a more significant expression of .
5. k = +1 Cosmological Solutions
- Equation (57), by setting , yields new analytical solutions for the scalar field:
- (a)
- Linear Power law :
- (b)
- Quadratic Power law :
- (c)
- Exponential :
There are several other possible solutions that can be achieved by setting other values of , p and/or other scalar field expressions. However, we can expect that such cases will yield a more significant expression of . - : Equation (55) becomesEquation (54) becomesEquation (62) yields new analytical solutions for the following cases:
- (a)
- General Power law :
- (b)
- Special Power law :
- (c)
- Logarithmic :
- (d)
- Exponential :There is no general solution, but for specific values of
- :
- :
There are several possible new solutions from the Equation (62) integral with other scalar field sources.
- Equation (70), for the power-law scalar field and , yields new analytical solutions in the following subcases:
- :
- :
There are several other possible solutions that can be achieved by setting other values of , p and/or other scalar field expressions. However, we can expect that such cases will yield a more significant expression of . - : Equation (55) leads to with . From this point, we obtain the exact Equation (21) formula and then Equations (22)–(25) as solutions for the large values of n. The solutions are the same as for the and cases and the graphs are shown in Figure 1d. We can conclude that the teleparallel solutions for will lead to the flat cosmological () solutions as a general limit.
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AL | Alexandre Landry |
CK | Cartan–Karlhede |
DE | Dark Energy |
EoS | Equation of State |
FE | Field Equation |
GR | General Relativity |
KS | Kantowski–Sachs |
KV | Killing Vector |
NGR | New General Relativity |
RW | Robertson–Walker |
TEGR | Teleparallel Equivalent of General Relativity |
TdS | Teleparallel de Sitter |
TRW | Teleparallel Robertson–Walker |
References
- Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Boehmer, C.G.; Coley, A.A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Class. Quantum Gravity 2019, 36, 183001. [Google Scholar] [CrossRef]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Phys. Rev. D 2019, 100, 084002. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Teleparallel theories of gravity as analogue of non-linear electrodynamics. Phys. Rev. D 2018, 97, 104042. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Di Valentino, E. Teleparallel Gravity: From Theory to Cosmology. Rep. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel grav-ity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Gholami, F.; Landry, A. Cosmological solutions in teleparallel F(T,B) gravity. Symmetry 2025, 17, 60. [Google Scholar] [CrossRef]
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetric Teleparallel Geometries. Class. Quantum Gravity 2022, 39, 22LT01. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; Gholami, F. Teleparallel Robertson-Walker Ge-ometries and Applications. Universe 2023, 9, 454. [Google Scholar] [CrossRef]
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetry and Equivalence in Teleparallel Gravity. J. Math. Phys. 2020, 61, 072503. [Google Scholar] [CrossRef]
- McNutt, D.D.; Coley, A.A.; van den Hoogen, R.J. A frame based approach to computing symmetries with non-trivial isotropy groups. J. Math. Phys. 2023, 64, 032503. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Spherically symmetric teleparallel geometries. Eur. Phys. J. C 2024, 84, 334. [Google Scholar] [CrossRef] [PubMed]
- Landry, A. Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity. Axioms 2024, 13, 333. [Google Scholar] [CrossRef]
- Landry, A. Kantowski-Sachs spherically symmetric solutions in teleparallel F(T) gravity. Symmetry 2024, 16, 953. [Google Scholar] [CrossRef]
- van den Hoogen, R.J.; Forance, H. Teleparallel Geometry with Spherical Symmetry: The diagonal and proper frames. J. Cosmol. Astrophys. 2024, 11, 033. [Google Scholar] [CrossRef]
- Landry, A. Scalar field Kantowski-Sachs spacetime solutions in teleparallel F(T) gravity. Universe 2025, 11, 26. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Generalized Teleparallel de Sitter geometries. Eur. Phys. J. C 2023, 83, 977. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity, An Introduction; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hohmann, M.; Järv, L.; Ualikhanova, U. Covariant formulation of sca-lar-torsion gravity. Phys. Rev. D 2018, 97, 104011. [Google Scholar] [CrossRef]
- Hohmann, M. Spacetime and observer space symmetries in the language of Cartan geometry. J. Math. Phys. 2016, 57, 082502. [Google Scholar] [CrossRef]
- Coley, A.A. Dynamical Systems and Cosmology; Kluwer Academic: Dordrecht, The Netherlands, 2003; ISBN 1-4020-1403-1. [Google Scholar]
- Bahamonde, S.; Bohmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Ta-manini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rep. 2018, 775–777, 1–122. [Google Scholar] [CrossRef]
- Kofinas, G.; Leon, G.; Saridakis, E.N. Dynamical behavior in f(T,TG) cosmology. Class. Quantum Gravity 2014, 31, 175011. [Google Scholar] [CrossRef]
- Bohmer, C.G.; Jensko, E. Modified gravity: A unified approach to metric-affine models. J. Math. Phys. 2023, 64, 082505. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Cuzinatto, R.R.; Medeiros, L.G. Analytic solutions for the Λ-FRW Model. Found. Phys. 2006, 36, 1736–1752. [Google Scholar] [CrossRef]
- Casalino, A.; Sanna, B.; Sebastiani, L.; Zerbini, S. Bounce Models within Teleparallel modified gravity. Phys. Rev. D 2021, 103, 023514. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. Gen. Relativ. Gravit. 2018, 50, 53. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Hohmann, M.; Said, J.L.; Pfeifer, C.; Saridakis, E.N. Perturbations in Non-Flat Cosmology for f(T) gravity. Eur. Phys. J. C 2023, 83, 193. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Steinhardt, P.; Wang, L.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, 123504. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P. Cosmological Imprint of an Energy Com-ponent with General Equation of State. Phys. Rev. Lett. 1998, 80, 1582. [Google Scholar] [CrossRef]
- Carroll, S.M. Quintessence and the Rest of the World. Phys. Rev. Lett. 1998, 81, 3067. [Google Scholar] [CrossRef]
- Doran, M.; Lilley, M.; Schwindt, J.; Wetterich, C. Quintessence and the Separation of CMB Peaks. Astrophys. J. 2001, 559, 501. [Google Scholar] [CrossRef]
- Zeng, X.-X.; Chen, D.-Y.; Li, L.-F. Holographic thermalization and gravita-tional collapse in the spacetime dominated by quintessence dark energy. Phys. Rev. D 2015, 91, 046005. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mishra, S.; Chakraborty, S. Dynamical system analysis of quintessence dark energy model. Int. J. Geom. Methods Mod. Phys. 2025, 22, 2450250. [Google Scholar] [CrossRef]
- Shlivko, D.; Steinhardt, P.J. Assessing observational constraints on dark energy. Phys. Lett. B 2024, 855, 138826. [Google Scholar] [CrossRef]
- Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nucl. Phys. B 1988, 302, 668. [Google Scholar] [CrossRef]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically Driven Quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef]
- Trivedi, O.; Khlopov, M.; Said, J.L.; Nunes, R. Cosmological singularities in f(T,ϕ) gravity. Eur. Phys. J. C 2023, 83, 1017. [Google Scholar] [CrossRef]
- Hohmann, M. Scalar-torsion theories of gravity III: Analogue of scalar-tensor gravity and conformal invariants. Phys. Rev. D 2018, 98, 064004. [Google Scholar] [CrossRef]
- Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than −1? Phys. Rev. D 2003, 68, 023509. [Google Scholar] [CrossRef]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Farnes, J.S. A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef]
- Baum, L.; Frampton, P.H. Turnaround in Cyclic Cosmology. Phys. Rev. Lett. 2007, 98, 071301. [Google Scholar] [CrossRef]
- Hu, W. Crossing the Phantom Divide: Dark Energy Internal Degrees of Freedom. Phys. Rev. D 2005, 71, 047301. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Shojaee, R. Phantom-Like Behavior in Modified Teleparallel Gravity. Adv. High Energy Phys. 2019, 2019, 4026856. [Google Scholar] [CrossRef]
- Pati, L.; Kadam, S.A.; Tripathy, S.K.; Mishra, B. Rip cosmological models in extended symmetric teleparallel gravity. Phys. Dark Universe 2022, 35, 100925. [Google Scholar] [CrossRef]
- Kucukakca, Y.; Akbarieh, A.R.; Ashrafi, S. Exact solutions in teleparallel dark energy model. Chin. J. Phys. 2023, 82, 47. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Saridakis, E.N.; Setare, M.R.; Xia, J.-Q. Quintom Cosmology: Theoretical implications and observations. Phys. Rep. 2010, 493, 1. [Google Scholar] [CrossRef]
- Guo, Z.-K.; Piao, Y.-S.; Zhang, X.; Zhang, Y.-Z. Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 2005, 608, 177. [Google Scholar] [CrossRef]
- Feng, B.; Li, M.; Piao, Y.-S.; Zhang, X. Oscillating quintom and the recurrent universe. Phys. Lett. B 2006, 634, 101. [Google Scholar] [CrossRef]
- Mishra, S.; Chakraborty, S. Dynamical system analysis of quintom dark energy model. Eur. Phys. J. C 2018, 78, 917. [Google Scholar] [CrossRef]
- Tot, J.; Coley, A.A.; Yildrim, B.; Leon, G. The dynamics of scalar-field Quintom cosmological models. Phys. Dark Universe 2023, 39, 101155. [Google Scholar] [CrossRef]
- Bahamonde, S.; Marciu, M.; Rudra, P. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term. J. Cosmol. Astropart. Phys. 2018, 4, 056. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.-J. Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics. Phys. Lett. B 2020, 810, 135806. [Google Scholar] [CrossRef]
- Iosifidis, D. Cosmological Hyperfluids, Torsion and Non-metricity. Eur. Phys. J. C 2020, 80, 1042. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Homogeneous and isotropic cos-mology in general teleparallel gravity. Eur. Phys. J. C 2023, 83, 315. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M. Gauge-invariant cosmological perturbations in general teleparallel gravity. Eur. Phys. J. C 2024, 84, 462. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bohmer, C.G.; d’Alfonso del Sordo, A. Cosmological fluids with boundary term couplings. Gen. Relativ. Gravit. 2024, 56, 75. [Google Scholar] [CrossRef]
- Dixit, A.; Pradhan, A. Bulk Viscous Flat FLRW Model with Observational Constraints in f(T,B) Gravity. Universe 2022, 8, 650. [Google Scholar] [CrossRef]
- Chokyi, K.K.; Chattopadhyay, S. Cosmological Models within f(T,B) Gravity in a Holographic Framework. Particles 2024, 7, 856. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landry, A. Scalar Field Source Teleparallel Robertson–Walker F(T) Gravity Solutions. Mathematics 2025, 13, 374. https://doi.org/10.3390/math13030374
Landry A. Scalar Field Source Teleparallel Robertson–Walker F(T) Gravity Solutions. Mathematics. 2025; 13(3):374. https://doi.org/10.3390/math13030374
Chicago/Turabian StyleLandry, Alexandre. 2025. "Scalar Field Source Teleparallel Robertson–Walker F(T) Gravity Solutions" Mathematics 13, no. 3: 374. https://doi.org/10.3390/math13030374
APA StyleLandry, A. (2025). Scalar Field Source Teleparallel Robertson–Walker F(T) Gravity Solutions. Mathematics, 13(3), 374. https://doi.org/10.3390/math13030374