A Bibliometric Review of Type-3 Fuzzy Logic Applications
Abstract
:1. Introduction
2. A Brief Description of Type-3 Fuzzy Logic Systems
3. Literature Review
4. Applications of Type-3 Fuzzy Logic Systems
4.1. T3FLSs
4.2. Search from Scopus
4.3. Search from Web of Science
5. Analysis and Future Trends
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perianes-Rodriguez, A.; Waltman, L.; Van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Inf. 2016, 10, 1178–1195. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Sci. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Conclusions of Type-3 Fuzzy Systems. In Interval Type-3 Fuzzy Systems: Theory and Design. Studies in Fuzziness and Soft Computing; Springer: Cham, Switzerland, 2022; Volume 418, pp. 99–100. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Forecasting the COVID-19 with interval type-3 fuzzy logic and the fractal dimension. Int. J. Fuzzy Syst. 2023, 25, 182–197. [Google Scholar] [CrossRef]
- Ma, C.; Mohammadzadeh, A.; Turabieh, H.; Mafarja, M.; Band, S.S.; Mosavi, A. Optimal type-3 fuzzy system for solving singular multi-pantograph equations. IEEE Access 2022, 8, 225692–225702. [Google Scholar] [CrossRef]
- Melin, P.; Sánchez, D.; Castro, J.R.; Castillo, O. Design of type-3 fuzzy systems and ensemble neural networks for COVID-19 time series prediction using a firefly algorithm. Axioms 2022, 11, 410. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Castillo, O.; Band, S.S.; Mosavi, A. A novel fractional-order multi-ple-model type-3 fuzzy control for nonlinear systems with unmodeled dynamics. Int. J. Fuzzy Syst. 2021, 23, 1633–1651. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Sabzalian, M.H.; Zhang, W. An interval type-3 fuzzy system and a new online fractional-order learning algorithm: Theory and practice. IEEE Trans. Fuzzy Syst. 2020, 28, 1940–1950. [Google Scholar] [CrossRef]
- Aazagreyir, P.; Appiahene, P.; Appiah, O.; Boateng, S.; Brown-Acquaye, W.L.; Koi-Akrofi, G.Y. An Integrated Fuzzy Multi-Criteria Decision-Making Methods for Service Selection: A Systematic Literature Review and Meta-Analysis. J. Theor. Appl. Inf. Technol. 2022, 100, 4671–4697. [Google Scholar] [CrossRef]
- Acarbay, C.; Kiyak, E. Fuzzy Bayesian based bow-tie risk assessment of runway overrun: A method for airline flight operations. Aircr. Eng. Aerosp. Technol. 2022, 94, 1706–1719. [Google Scholar] [CrossRef]
- Aggarwal, M.; Zubair, M.; Unal, D.; Al-Ali, A.; Reimann, T.; Alinier, G. A testbed implementation of a biometric identity-based encryption for IoMT-enabled healthcare system. In Proceedings of the 5th International Conference on Future Networks and Distributed Systems, Dubai, United Arab Emirates, 15–16 December 2021; pp. 58–63. [Google Scholar] [CrossRef]
- Ahmad, T.; Baharun, S.; Bakar, S.A. Directed laplacians for fuzzy autocatalytic set of fuzzy graph type-3 of an incineration process. AIP Conf. Proc. 2010, 1309, 112–120. [Google Scholar] [CrossRef]
- Ahmad, T.; Bakar, S.A.; Baharun, S.; Binjadhnan, F.A.M. Coordinated transformation for fuzzy autocatalytic set of fuzzy graph type-3. J. Math. Stat. 2016, 11, 119–127. [Google Scholar] [CrossRef]
- Alattas, K.A.; Mohammadzadeh, A.; Mobayen, S.; Aly, A.A.; Felemban, B.F.; Vu, M.T. A new data-driven control system for memss gyroscopes: Dynamics estimation by type-3 fuzzy systems. Micromachines 2021, 12, 1390. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.A.; Felemban, B.F.; Mohammadzadeh, A.; Castillo, O.; Bartoszewicz, A. Frequency regulation system: A deep learning identification, type-3 fuzzy control and lmi stability analysis. Energies 2021, 14, 7801. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. A methodology for building interval type-3 fuzzy systems based on the principle of justifiable granularity. Int. J. Intell. Syst. 2022, 37, 7909–7943. [Google Scholar] [CrossRef]
- Aisbett, J.; Rickard, J.T.; Morgenthaler, D. Intersection and union of type-n fuzzy sets. In Proceedings of the 2010 IEEE World Congress on Computational Intelligence, WCCI, Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef]
- Amiri Shahmirani, M.R.; Nikghalb Rashti, A.A.; Adib Ramezani, M.R.; Golafshani, E.M. Buildings, causalities, and injuries innovative fuzzy damage model during earthquakes. Shock Vib. 2022, 2022, 4746587. [Google Scholar] [CrossRef]
- Andonov, V.; Angelova, N. Modifications of the Algorithms for Transition Functioning in GNs, GNCP, IFGNCP1 and IFGNCP3 When Merging of Tokens is Permitted. In Imprecision and Uncertainty in Information Representation and Processing. Studies in Fuzziness and Soft Computing; Angelov, P., Sotirov, S., Eds.; Springer: Cham, Switzerland, 2016; Volume 332. [Google Scholar] [CrossRef]
- Ariono, M.R.E.; Budiman, F.; Silalahi, D.K. Design of banana ripeness classification device based on alcohol level and color using a hybrid adaptive neuro-fuzzy inference system method. In Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics; Lecture Notes in Electrical Engineering; Triwiyanto, Nugroho, H.A., Rizal, A., Caesarendra, W., Eds.; Springer: Singapore, 2021; Volume 746, pp. 107–117. [Google Scholar] [CrossRef]
- Bakar, S.A.; Ahmad, T.; Baharun, S. Convergence of markov process for fuzzy auto-catalytic set of fuzzy graph type-3 of an incineration process. In Proceedings of the 11th WSEAS International Conference on Nural Networks and 11th WSEAS International Conference on Evolutionary Computing and 11th WSEAS International Conference on FUZZY Systems, Iasi, Romania, 13–15 June 2010; pp. 139–144. [Google Scholar]
- Balootaki, M.A.; Rahmani, H.; Moeinkhah, H.; Mohammadzadeh, A. Non-singleton fuzzy control for multi-synchronization of chaotic systems. Appl. Soft Comput. 2021, 99, 106924. [Google Scholar] [CrossRef]
- Bardossy, A.; Bogardi, I.; Kelly, W.E. Geostatistics utilizing imprecise (fuzzy) information. Fuzzy Sets Syst. 1989, 31, 311–328. [Google Scholar] [CrossRef]
- Carrasquel, S.; Rodríguez, R.; Tineo, L. Queries with grouping based on similarity. Ingeniare 2014, 22, 517–527. [Google Scholar] [CrossRef]
- Cassalho, F.; Beskow, S.; de Mello, C.R.; de Moura, M.M.; de Oliveira, L.F.; de Aguiar, M.S. Artificial intelligence for identifying hydrologically homogeneous regions: A state of the art regional flood frequency analysis. Hydrol. Process. 2019, 33, 1101–1116. [Google Scholar] [CrossRef]
- Chakraborty, A.; Mondal, S.P.; Alam, S.; Dey, A. Classification of trapezoidal bipolar neu-trosophic number, de-bipolarization technique and its execution in cloud service-based MCGDM problem. Complex Intell. Syst. 2021, 7, 145–162. [Google Scholar] [CrossRef]
- Choi, H.; Lee, K. The tuning method on consequence membership function of T-S type FLC. J. Inst. Control. Robot. Syst. 2011, 17, 264–268. [Google Scholar] [CrossRef]
- Devi, R.N.; Muthumari, G. Properties on topologized domination in neutrosophic graphs. Neutrosophic Sets Syst. 2021, 47, 511–519. Available online: https://digitalrepository.unm.edu/nss_journal/vol47/iss1/32 (accessed on 3 November 2024).
- El-Fergany, A. Multi-objective allocation of multi-type distributed generators along distribution networks using backtracking search algorithm and fuzzy expert rules. Electr. Power Components Syst. 2016, 44, 252–267. [Google Scholar] [CrossRef]
- Fletcher, A.; Davis, J.P. Decision-making with incomplete evidence. In Proceedings of the SPE—Asia Pacific Oil and Gas Conference, Melbourne, Australia, 8–10 October 2002; pp. 725–739. [Google Scholar] [CrossRef]
- Ganeha, B.; Umesh, K.N. Condition monitoring of air compressor in steel industry using ANFIS. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 9, 485–498. [Google Scholar]
- Khalil, S.M. Decision making using new category of similarity measures and study their appli-cations in medical diagnosis problems. Afr. Mat. 2021, 32, 865–878. [Google Scholar] [CrossRef]
- Kim, H.H.; Mizumoto, M.; Toyoda, J.; Tanaka, K. L-fuzzy grammars. Inf. Sci. 1975, 8, 123–140. [Google Scholar] [CrossRef]
- Pedrycz, W.; Al-Hmouz, R.; Morfeq, A.; Balamash, A.S. Building granular fuzzy decision support systems. Knowl.-Based Syst. 2014, 58, 3–10. [Google Scholar] [CrossRef]
- Pei, Z.; Liu, X.; Zou, L. Extracting association rules based on intuitionistic fuzzy sets. Int. J. Innov. Comput. Inf. Control 2010, 6, 2567–2580. [Google Scholar]
- Rickard, J.T.; Aisbett, J.; Gibbon, G. Fuzzy subsethood for fuzzy sets of type-2 and generalized type-n. IEEE Trans. Fuzzy Syst. 2009, 17, 50–60. [Google Scholar] [CrossRef]
- Rickard, J.T.; Aisbett, J.; Gibbon, G.; Morgenthaler, D. Fuzzy subsethood for type-n fuzzy sets. In Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society-NAFIPS, Cincinnati, OH, USA, 14–17 June 2009. [Google Scholar] [CrossRef]
- TÜrksen, B.I. Recent advances in fuzzy system modeling. Front. High. Order Fuzzy Sets 2015, 51–66. [Google Scholar] [CrossRef]
- Türksen, I.B. From type 1 to full type n fuzzy system models. J. Mult.-Valued Log. Soft Comput. 2014, 22, 543–560. [Google Scholar]
- Türkşen, I.B. Type 1 and full type 2 fuzzy system models. Stud. Fuzziness Soft Comput. 2015, 326, 643–659. [Google Scholar] [CrossRef]
- Verma, H.; Agrawal, R.K. Automatic segmentation of MRI brain image using type-3 fuzzy c-means clustering algorithm. In Proceedings of the 5th Indian International Conference on Artificial Intelligence, IICAI 2011, Tumkur, India, 14–16 December 2011; pp. 1060–1069. [Google Scholar]
- Wang, G.; Ye, L. Spatial-temporal pattern of mismatch degree of high-quality tourism devel-opment and its formation mechanism in taihu lake basin, China. Sustainability 2022, 14, 4812. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, Y.Q.; Liu, C.H.; Ruan, W.Q. Conducting an integrated perspective of academic networks and individual elements on tourism scholars’ innovation performance discovery. J. Hosp. Tour. Manag. 2022, 51, 39–50. [Google Scholar] [CrossRef]
- Xiong, W.; Shindo, H.; Watanabe, Y. Quantification approach to software requirements analysis and its fuzzy analytic hierarchy process mapping. Ruan Jian Xue Bao/J. Softw. 2005, 16, 427–433. [Google Scholar] [CrossRef]
- Ying, H. Structure and stability analysis of general mamdani fuzzy dynamic models. Int. J. Intell. Syst. 2015, 20, 103–125. [Google Scholar] [CrossRef]
- Zhang, X.; Bo, C.; Smarandache, F.; Dai, J. New inclusion relation of neutrosophic sets with applications and related lattice structure. Int. J. Mach. Learn. Cybern. 2018, 9, 1753–1763. [Google Scholar] [CrossRef]
- Zhang, X.; Bo, C.; Smarandache, F.; Park, C. New Operations of Totally Depend-ent-Neutrosophic Sets and Totally Dependent-Neutrosophic Soft Sets. Symmetry 2018, 10, 187. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Lei, T. On neutrosophic crisp sets and neutrosophic crisp mathematical morphology. Neutrosophic Sets Syst. 2021, 43, 1–11. [Google Scholar]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for opti-mised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Aliev, R.; Abiyev, R.; Abizada, S. Type-3 fuzzy neural networks for dynamic system control. Inf. Sci. 2025, 690, 121454. [Google Scholar] [CrossRef]
- Taghavifar, H.; Mohammadzadeh, A.; Zhang, C. A non-singleton type-3 neuro-fuzzy fixed-time synchronizing method. Chaos Solitons Fractals 2024, 189, 115671. [Google Scholar] [CrossRef]
- Amador-Angulo, L.; Castillo, O.; Castro, J.R.; Melin, P. A new approach for interval type-3 fuzzy control of nonlinear plants. Int. J. Fuzzy Syst. 2023, 25, 1624–1642. [Google Scholar] [CrossRef]
- Ochoa, P.; Castillo, O.; Melin, P.; Castro, J.R. Interval type-3 fuzzy differential evolution for parameterization of fuzzy controllers. Int. J. Fuzzy Syst. 2023, 25, 1360–1376. [Google Scholar] [CrossRef]
- Pokhrel, S.; Sathyan, A.; Eisa, S.A.; Cohen, K. Use of Fuzzy PID Controller for Pitch Control of a Wind Turbine. In Applications of Fuzzy Techniques. NAFIPS 2022; Lecture Notes in Networks and Systems; Dick, S., Kreinovich, V., Lingras, P., Eds.; Springer: Cham, Switzerland, 2023; Volume 500, pp. 205–216. [Google Scholar] [CrossRef]
- Sathyan, A.; Eisa, S.A.; Cohen, K. Can Physically-Trained Genetic Fuzzy Learning Algorithm Improve Pitch Control in Wind Turbines? In Applications of Fuzzy Techniques. NAFIPS 2022; Lecture Notes in Networks and Systems; Dick, S., Kreinovich, V., Lingras, P., Eds.; Springer: Cham, Switzerland, 2023; Volume 500, pp. 243–254. [Google Scholar] [CrossRef]
- Taghieh, A.; Mohammadzadeh, A.; Zhang, C.; Rathinasamy, S.; Bekiros, S. A novel adaptive interval type-3 neuro-fuzzy robust controller for nonlinear complex dynamical systems with inherent uncertainties. Nonlinear Dyn. 2023, 111, 411–425. [Google Scholar] [CrossRef]
- Tarafdar, A.; Majumder, P.; Deb, M.; Bera, U.K. Application of a q-rung orthopair hesitant fuzzy aggregated type-3 fuzzy logic in the characterization of performance-emission profile of a single cylinder CI-engine operating with hydrogen in dual fuel mode. Energy 2023, 269, 126751. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, C.; Mohammadzadeh, A. Type-3 Fuzzy Control of Robotic Manipulators. Symmetry 2023, 15, 483. [Google Scholar] [CrossRef]
- Amador-Angulo, L.; Castillo, O.; Melin, P.; Castro, J.R. Interval type-3 fuzzy adaptation of the bee colony optimization algorithm for optimal fuzzy control of an autonomous mobile robot. Micromachines 2022, 13, 1490. [Google Scholar] [CrossRef] [PubMed]
- Gheisarnejad, M.; Mohammadzadeh, A.; Farsizadeh, H.; Khooban, M. Stabilization of 5G tel-ecom converter-based deep type-3 fuzzy machine learning control for telecom applications. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 544–548. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Mohammadzadeh, A.; Khooban, M. Model predictive control based type-3 fuzzy estimator for voltage stabilization of DC power converters. IEEE Trans. Ind. Electron. 2022, 69, 13849–13858. [Google Scholar] [CrossRef]
- Taghieh, A.; Aly, A.A.; Felemban, B.F.; Althobaiti, A.; Mohammadzadeh, A.; Bartoszewicz, A. A hybrid predictive type-3 fuzzy control for time-delay multi-agent systems. Electronics 2022, 11, 63. [Google Scholar] [CrossRef]
- Taghieh, A.; Mohammadzadeh, A.; Zhang, C.; Kausar, N.; Castillo, O. A type-3 fuzzy control for current sharing and voltage balancing in microgrids. Appl. Soft Comput. 2022, 129, 109636. [Google Scholar] [CrossRef]
- Taghieh, A.; Zhang, C.; Alattas, K.A.; Bouteraa, Y.; Rathinasamy, S.; Mohammadzadeh, A. A predictive type-3 fuzzy control for underactuated surface vehicles. Ocean. Eng. 2022, 266, 113014. [Google Scholar] [CrossRef]
- Tian, M.W.; Yan, S.R.; Liu, J.; Alattas, K.A.; Mohammadzadeh, A.; Vu, M.T. A new type-3 fuzzy logic approach for chaotic systems: Robust learning algorithm. Mathematics 2022, 10, 2594. [Google Scholar] [CrossRef]
- Fan, W.; Mohammadzadeh, A.; Kausar, N.; Pamucar, D.; Ide, N.A.D. A new type-3 fuzzy PID for energy management in microgrids. Adv. Math. Phys. 2022, 2022, 8737448. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Interval type-3 fuzzy aggregation of neural networks for multiple time series prediction: The case of financial forecasting. Axioms 2022, 11, 251. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Pulido, M.; Melin, P. Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction. Eng. Appl. Artif.-Intell. 2022, 114, 105110. [Google Scholar] [CrossRef] [PubMed]
- Castillo, O.; Pulido, M.; Melin, P. Interval Type-3 Fuzzy Aggregators for Ensembles of Neural Networks in Time Series Prediction. In Intelligent and Fuzzy Systems. INFUS 2022; Lecture Notes in Networks and Systems; Kahraman, C., Tolga, A.C., Cevik Onar, S., Cebi, S., Oztaysi, B., Sari, I.U., Eds.; Springer: Cham, Switzerland, 2022; Volume 504, pp. 785–793. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Interval type-3 fuzzy control for automated tuning of image quality in televisions. Axioms 2022, 11, 276. [Google Scholar] [CrossRef]
- Tian, M.W.; Bouteraa, Y.; Alattas, K.A.; Yan, S.R.; Alanazi, A.K.; Mohammadzadeh, A.; Mobayen, S. A type-3 fuzzy approach for stabilization and synchronization of chaotic systems: Applicable for financial and physical chaotic systems. Complexity 2022, 2022, 8437910. [Google Scholar] [CrossRef]
- Elhaki, O.; Shojaei, K.; Mohammadzadeh, A.; Rathinasamy, S. Robust amplitude-limited in-terval type-3 neuro-fuzzy controller for robot manipulators with prescribed performance by output feedback. Neural Comput. Appl. 2022, 35, 9115–9130. [Google Scholar] [CrossRef]
- Peraza, C.; Ochoa, P.; Castillo, O.; Geem, Z.W. Interval-type 3 fuzzy differential evolution for designing an interval-type 3 fuzzy controller of a unicycle mobile robot. Mathematics 2022, 10, 3533. [Google Scholar] [CrossRef]
- Wu, L.; Wang, D.; Zhang, C.; Mohammadzadeh, A. Chaotic synchronization in mobile robots. Mathematics 2022, 10, 4568. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Interval type-3 fuzzy fractal approach in sound speaker quality control evaluation. Eng. Appl. Artif. Intell. 2022, 116, 105363. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Interval Type-3 Fuzzy Logic Systems (IT3FLSs). In Interval Type-3 Fuzzy Systems: Theory and Design. Studies in Fuzziness and Soft Computing; Springer: Cham, Switzerland, 2022; Volume 418, pp. 45–98. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Interval Type-3 Fuzzy Sets. In Interval Type-3 Fuzzy Systems: Theory and Design. Studies in Fuzziness and Soft Computing; Springer: Cham, Switzerland, 2022; Volume 418, pp. 13–43. [Google Scholar] [CrossRef]
- Castillo, O.; Castro, J.R.; Melin, P. Introduction to Interval Type-3 Fuzzy Systems. In Interval Type-3 Fuzzy Systems: Theory and Design. Studies in Fuzziness and Soft Computing; Springer: Cham, Switzerland, 2022; Volume 418, pp. 1–4. [Google Scholar] [CrossRef]
- Castillo, O.; Melin, P. Towards Interval Type-3 Intuitionistic Fuzzy Sets and Systems. Mathematics 2022, 10, 4091. [Google Scholar] [CrossRef]
- Elhaki, O.; Shojaei, K.; Mohammadzadeh, A. Robust state and output feedback prescribed performance interval type-3 fuzzy reinforcement learning controller for an unmanned aerial vehicle with ac-tuator saturation. IET Control. Theory Appl. 2022, 17, 605–627. [Google Scholar] [CrossRef]
- Huang, Z. Research on innovation capability of regional innovation system based on fuzzy-set qualitative comparative analysis: Evidence from china. Systems 2022, 10, 220. [Google Scholar] [CrossRef]
- Kousar, S.; Saleem, T.; Kausar, N.; Pamucar, D.; Addis, G.M. Homomorphisms of lattice-valued intuitionistic fuzzy subgroup type-3. Comput. Intell. Neurosci. 2022, 2022, 6847138. [Google Scholar] [CrossRef] [PubMed]
- Kreinovich, V.; Kosheleva, O.; Melin, P.; Castillo, O. Efficient algorithms for data processing under type-3 (and higher) fuzzy uncertainty. Mathematics 2022, 10, 2361. [Google Scholar] [CrossRef]
- Riaz, A.; Kousar, S.; Kausar, N.; Pamucar, D.; Addis, G.M. An analysis of algebraic codes over lattice valued intuitionistic fuzzy type-3 R-submodules. Comput. Intell. Neurosci. 2022, 2022, 8148284. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Kousar, S.; Kausar, N.; Pamucar, D.; Addis, G.M. Codes over latticevalued intuitionistic fuzzy set type-3 with application to the complex DNA analysis. Complexity 2022, 2022, 5288187. [Google Scholar] [CrossRef]
- Singh, D.; Verma, N.; Ghosh, A.; Malagaudanavar, A. An approach towards the design of in-terval type-3 T-S fuzzy system. IEEE Trans. Fuzzy Syst. 2022, 30, 3880–3893. [Google Scholar] [CrossRef]
- Singuluri, I.; Ravishankar, N.; Swetha, C.H.U. An unique optimal solution for type – III tri-angular intuitionistic fuzzy transportation issue. Reliab. Theory Appl. 2022, 17, 67–73. [Google Scholar] [CrossRef]
- Tian, M.W.; Mohammadzadeh, A.; Tavoosi, J.; Mobayen, S.; Asad, J.H.; Castillo, O.; Várkonyi-Kóczy, A.R. A deep-learned type-3 fuzzy system and its application in modeling problems. Acta Polytech. Hung. 2022, 19, 151–172. [Google Scholar] [CrossRef]
- Tian, M.W.; Yan, S.R.; Mohammadzadeh, A.; Tavoosi, J.; Mobayen, S.; Safdar, R.; Assawinchaichote, W.; Vu, M.T.; Zhilenkov, A. Stability of interval type-3 fuzzy controllers for autonomous vehicles. Mathematics 2021, 9, 742. [Google Scholar] [CrossRef]
- Yan, S.; Aly, A.A.; Felemban, B.F.; Gheisarnejad, M.; Tian, M.; Khooban, M.H.; Mobayen, S. A new event-triggered type-3 fuzzy control system for multiagent systems: Optimal economic efficient approach for actuator activating. Electronics 2021, 10, 3122. [Google Scholar] [CrossRef]
- Cao, Y.; Raise, A.; Mohammadzadeh, A.; Rathinasamy, S.; Band, S.S.; Mosavi, A. Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction. Energy Rep. 2021, 7, 8115–8127. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Vafaie, R.H. A deep learned fuzzy control for inertial sensing: Micro electro mechanical systems. Appl. Soft Comput. 2021, 109, 107597. [Google Scholar] [CrossRef]
- Qasem, S.N.; Ahmadian, A.; Mohammadzadeh, A.; Rathinasamy, S.; Pahlevanzadeh, B. A type-3 logic fuzzy system: Optimized by a correntropy based kalman filter with adaptive fuzzy kernel size. Inf. Sci. 2021, 572, 424–443. [Google Scholar] [CrossRef]
- Vafaie, R.H.; Mohammadzadeh, A.; Piran, M.J. A new type-3 fuzzy predictive controller for MEMS gyroscopes. Nonlinear Dyn. 2021, 106, 381–403. [Google Scholar] [CrossRef]
- Wang, J.H.; Tavoosi, J.; Mohammadzadeh, A.; Mobayen, S.; Asad, J.H.; Assawinchaichote, W.; Vu, M.T.; Skruch, P. Non-singleton type-3 fuzzy approach for flowmeter fault detection: Experimental study in a gas industry. Sensors 2021, 21, 7419. [Google Scholar] [CrossRef] [PubMed]
- Nabipour, N.; Qasem, S.N.; Jermsittiparsert, K. Type-3 fuzzy voltage management in PV/Hydrogen fuel cell/battery hybrid systems. Int. J. Hydrogen Energy 2020, 45, 32478–32492. [Google Scholar] [CrossRef]
- Mosavi, A.; Qasem, S.N.; Shokri, M.; Shahab, S.; Mohammadzadeh, A. Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics, variable irradiation and temperature. Electronics 2020, 9, 1455. [Google Scholar] [CrossRef]
- Nurfatiha, C.W.; Bakar, S.A. Validation of modified directed graph drawing clustering method for fuzzy autocatalytic set using fuzzy C-means. AIP Conf. Proc. 2017, 1830, 020055. [Google Scholar] [CrossRef]
- Senthil Kumar, P. PSK method for solving type-1 and type-3 fuzzy transportation problems. In Fuzzy Systems: Concepts, Methodologies, Tools, and Applications; Information Resources Management Association: Hershey, PA, USA, 2017; pp. 367–393. [Google Scholar] [CrossRef]
- Liu, Z.; Mohammadzadeh, A.; Turabieh, H.; Mafarja, M.; Band, S.S.; Mosavi, A. A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access 2021, 9, 10498–10508. [Google Scholar] [CrossRef]
Year | Applications | References |
---|---|---|
2025 | Control systems | [51] |
2024 | Chaotic systems | [52] |
2023 | Control systems | [53,54,55,56,57,58,59] |
Forecasting | [5] | |
Robotic | [60] | |
2022 | Control systems | [61,62,63,64,65,66,67] |
Time series prediction | [7,68,69,70] | |
Image quality | [71] | |
Financial forecasting | [72] | |
Robotic | [73,74,75] | |
Other applications | [6,76,77,78,79,80,81,82,83,84,85,86,87,88,89] | |
2021 | Control systems | [8,90,91] |
Deep learning | [92] | |
Several applications | [93,94,95,96] | |
2020 | Hybrid systems | [97] |
Learning algorithm/control systems | [9,98] | |
2017 | Clustering/transportation problems | [99,100] |
2016 | Transportation problems | [100] |
2010 | Neural networks | [22] |
Authors | Publications | Countries |
---|---|---|
Mohammadzadeh, A | 44 | China |
Castillo, O. | 36 | Mexico |
Melin, P. | 31 | Mexico |
Castro J.R. | 12 | Mexico |
Taghavifar, H. | 7 | Canada |
Alattas, K.A. | 7 | Saudi Arabia |
Tarafdar, A. | 6 | India |
Majumber, P. | 6 | India |
Bera, U.K. | 6 | India |
Mosavi A | 5 | Iran |
Country | Papers | Citations | TLiSt |
---|---|---|---|
China | 39 | 767 | 102 |
Iran | 22 | 749 | 71 |
Taiwan | 10 | 496 | 56 |
Saudi Arabia | 15 | 475 | 52 |
Hungary | 5 | 362 | 31 |
Palestine | 4 | 224 | 28 |
South Korea | 11 | 181 | 26 |
Vietnam | 5 | 310 | 25 |
Turkey | 11 | 100 | 23 |
Canada | 10 | 45 | 22 |
Mexico | 40 | 544 | 20 |
India | 12 | 338 | 19 |
Germany | 3 | 256 | 18 |
Thailand | 3 | 112 | 16 |
Norway | 2 | 155 | 16 |
Slovakia | 2 | 62 | 14 |
Azerbaijan | 5 | 32 | 13 |
Italy | 5 | 22 | 13 |
Poland | 3 | 72 | 12 |
United Kingdom | 3 | 67 | 12 |
Yemen | 3 | 176 | 12 |
Citations | |||||||||
---|---|---|---|---|---|---|---|---|---|
Authors | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | Avg. per Year | Total |
4 | 9 | 84 | 287 | 475 | 600 | 18 | 74.75 | 1495 | |
Mohammad- zadeh, A. et al. [9] | 1 | 4 | 28 | 32 | 29 | 35 | 0 | 21.5 | 129 |
Liu, Z. et al. [101] | 0 | 0 | 8 | 39 | 26 | 22 | 0 | 19 | 95 |
Mohammad- zadeh, A. et al. [8] | 0 | 0 | 6 | 38 | 28 | 9 | 0 | 16.2 | 81 |
Qasem, N. et al. [94] | 0 | 0 | 6 | 31 | 22 | 14 | 1 | 14.8 | 74 |
Cao, Y. et al. [92] | 0 | 0 | 1 | 30 | 21 | 16 | 0 | 13.6 | 68 |
Taghieh, A. et al. [64] | 0 | 0 | 0 | 0 | 42 | 21 | 1 | 16 | 64 |
Mosavi, A. et al. [98] | 0 | 2 | 9 | 19 | 12 | 2 | 0 | 7.33 | 44 |
Taghieh, A. et al. [65] | 0 | 0 | 0 | 0 | 25 | 13 | 1 | 9.75 | 39 |
Wang, JH. et al. [96] | 0 | 0 | 0 | 8 | 12 | 18 | 0 | 7.6 | 38 |
Nabipour, N. et al. [97] | 0 | 0 | 7 | 6 | 13 | 12 | 0 | 6.33 | 38 |
Vafaie, RH. et al. [95] | 0 | 0 | 4 | 6 | 18 | 8 | 1 | 7.4 | 37 |
Singh, DJ. et al. [87] | 0 | 0 | 0 | 4 | 9 | 17 | 0 | 7.5 | 30 |
Ma, C. et al. [6] | 0 | 0 | 5 | 8 | 10 | 5 | 0 | 4.67 | 28 |
Castillo, O. et al. [5] | 0 | 0 | 0 | 0 | 10 | 16 | 1 | 6.75 | 27 |
Melin, P. et al. [7] | 0 | 0 | 0 | 2 | 16 | 8 | 1 | 6.75 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdez, F.; Castillo, O.; Melin, P. A Bibliometric Review of Type-3 Fuzzy Logic Applications. Mathematics 2025, 13, 375. https://doi.org/10.3390/math13030375
Valdez F, Castillo O, Melin P. A Bibliometric Review of Type-3 Fuzzy Logic Applications. Mathematics. 2025; 13(3):375. https://doi.org/10.3390/math13030375
Chicago/Turabian StyleValdez, Fevrier, Oscar Castillo, and Patricia Melin. 2025. "A Bibliometric Review of Type-3 Fuzzy Logic Applications" Mathematics 13, no. 3: 375. https://doi.org/10.3390/math13030375
APA StyleValdez, F., Castillo, O., & Melin, P. (2025). A Bibliometric Review of Type-3 Fuzzy Logic Applications. Mathematics, 13(3), 375. https://doi.org/10.3390/math13030375