Analysis of Blood Stasis for Stent Thrombosis Using an Advection-Diffusion Lattice Boltzmann Scheme
Abstract
:1. Introduction
- elevated concentrations of transported chemical species and activated platelets (which have been exposed to high fluid shear);
- increased fluid residence time;
- suppressed fluid and wall shear rates.
- a “clotting algorithm”, based upon a suitable asymptotic proxy for blood residence time;
- a simple and robust boundary closure algorithm for flow and advection-diffusion modalities, accurately dealing with geometrical complexity, such as endothelial cells and rounded stent struts.
2. Methodology
2.1. Flow Solver Algorithm
2.2. Domain Residence Time Calculation
2.3. Computational Domain
3. Results and Discussion
- Blood Residence Time
- -
- The residency time is a measure of the amount of time a fluid parcel has spent within the domain and can be used to locate atheroprone regions within the domain [49]. In relation to stent haemorheology, regions of elevated residency time may accumulate platelets and adhesion proteins, promoting thrombus formation.
- Wall Shear Stress
- -
- In the 1970s, it was hypothesised that the build-up of atheroma correlated with lower WSS [50]. Over the last couple of decades, more evidence has been provided to support this assertion [51,52,53], with low WSS regions now being characterised as WSS < 0.4–1.0 Pa [51,54,55]. The build up of atheroma is associated with regions of low oscillatory WSS, which typically occur in regions of flow separation and re-circulation. Higher WSS also plays a role in atheroma formation. The region of higher WSS found on the adlumninal surface of the struts results in platelet geometry change and activation. These platelets can then become trapped in the lower wall shear region or the wake behind the strut [56]. When discussing the results, high WSS is identified as WSS > 7 Pa [56].
- Shear Stress
- -
- Shear rates in medium-to-large-sized arteries generally fall within the range 100 to 1000 s−1 [57]. However, stenosed regions experience larger shear rates. Indeed, it has been shown that at and above super-critical shear rates , the vWF is activated in the diseased vessel, which sees a narrowing of the artery, and forms long strings that increase platelet binding [7,58]. Accordingly, shear rates above are taken to indicate an increased risk of atheroma formation, caused by the effective local narrowing of the artery due to the presence of the strut.
3.1. Single Stent Strut Simulations
3.2. Multiple Stent Struts Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ISR | in-stent restenosis |
ST | stent thrombosis |
ESS | endothelial shear stress |
WSS | wall shear stress |
vWF | von Willebrand factor |
CFD | computational fluid dynamics |
DES | drug-eluting stents |
LBM | lattice Boltzmann method |
2D | two-dimensional |
probability density function | |
LBGK | lattice Bhatnagar–Gross–Krook |
Appendix A. Simulation Set Up
Appendix A.1. Control of Diffusion
Appendix A.2. Treatment of Irregular Boundaries
Appendix A.3. Flow Boundary Conditions
References
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Buccheri, D.; Piraino, D.; Andolina, G.; Cortese, B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J. Thorac. Dis. 2016, 8, E1150–E1162. [Google Scholar] [CrossRef]
- Polimeni, A.; Sorrentino, S.; Spaccarotella, C.; Mongiardo, A.; Sabatino, J.; De Rosa, S.; Gori, T.; Indolfi, C. Stent Thrombosis After Percutaneous Coronary Intervention: From Bare-Metal to the Last Generation of Drug-Eluting Stents. Cardiol. Clin. 2020, 38, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Moukarbel, G. Coronary Stent Thrombosis and Mortality: Does the Relationship Stand the Test of Time? J. Am. Heart Assoc. 2022, 11, e025341. [Google Scholar] [CrossRef] [PubMed]
- Strony, J.; Beaudoin, A.; Brands, D.; Adelman, B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am. J. Physiol.-Heart Circ. Physiol. 1993, 265, H1787–H1796. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Han, K.; Qi, X.; Ma, S.; Li, L.; Yin, J.; Li, D.; Li, X.; Qian, J. Quantifying Shear-induced Margination and Adhesion of Platelets in Microvascular Blood Flow. J. Mol. Biol. 2023, 435, 167824. [Google Scholar] [CrossRef]
- Okhota, S.; Melnikov, I.; Avtaeva, Y.; Kozlov, S.; Gabbasov, Z. Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology. Int. J. Mol. Sci. 2020, 21, 7804. [Google Scholar] [CrossRef]
- Hoare, D.; Bussooa, A.; Neale, S.; Mirzai, N.; Mercer, J. The Future of Cardiovascular Stents: Bioresorbable and Integrated Biosensor Technology. Adv. Sci. 2019, 6, 1900856. [Google Scholar] [CrossRef]
- Koskinas, K.C.; Chatzizisis, Y.S.; Antoniadis, A.P.; Giannoglou, G.D. Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis. J. Am. Coll. Cardiol. 2012, 59, 1337–1349. [Google Scholar] [CrossRef]
- Kolandaivelu, K.; Swaminathan, R.; Gibson, W.J.; Kolachalama, V.B.; Nguyen-Ehrenreich, K.L.; Giddings, V.L.; Coleman, L.; Wong, G.K.; Edelman, E.R. Stent Thrombogenicity Early in High-Risk Interventional Settings Is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings. Circulation 2011, 123, 1400–1409. [Google Scholar] [CrossRef]
- Rikhtegar, F.; Wyss, C.; Stok, K.S.; Poulikakos, D.; Müller, R.; Kurtcuoglu, V. Hemodynamics in coronary arteries with overlapping stents. J. Biomech. 2014, 47, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.X.; Poon, E.K.; Thondapu, V.; Hutchins, N.; Barlis, P.; Ooi, A. Haemodynamic effects of incomplete stent apposition in curved coronary arteries. J. Biomech. 2017, 63, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Tzafriri, A.R.; Seifert, P.; Groothuis, A.; Rogers, C.; Edelman, E.R. Strut Position, Blood Flow, and Drug Deposition. Circulation 2005, 111, 2958–2965. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiong, Y.; Jiang, W.; Yan, F.; Guo, M.; Wang, Q.; Fan, Y. Numerical simulation on the effects of drug eluting stents at different Reynolds numbers on hemodynamic and drug concentration distribution. Biomed. Eng. Online 2015, 14 (Suppl. S1), S16. [Google Scholar] [CrossRef]
- O’Brien, C.C.; Kolachalama, V.B.; Barber, T.J.; Simmons, A.; Edelman, E.R. Impact of flow pulsatility on arterial drug distribution in stent-based therapy. J. Control. Release 2013, 168, 115–124. [Google Scholar] [CrossRef]
- Vijayaratnam, P.R.S.; Reizes, J.A.; Barber, T.J. Flow-Mediated Drug Transport from Drug-Eluting Stents is Negligible: Numerical and In-Vitro Investigations. Ann. Biomed. Eng. 2019, 47, 878–890. [Google Scholar] [CrossRef]
- Chabi, F.; Abbasnezhad, N.; Champmartin, S.; Sarraf, C.; Bakir, F. Computer Simulation of the Coupling Between Recirculation Flows and Drug Release from a Coronary Drug-Eluting Stent. Biomed. Mater. Devices 2023, 2, 365–375. [Google Scholar] [CrossRef]
- Vijayaratnam, P.R.S.; Reizes, J.A.; Barber, T.J. The impact of strut profile geometry and malapposition on the haemodynamics and drug-transport behaviour of arteries treated with drug-eluting stents. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 3881–3907. [Google Scholar] [CrossRef]
- Li, Y.; Amili, O.; Moen, S.; Van de Moortele, P.F.; Grande, A.; Jagadeesan, B.; Coletti, F. Flow residence time in intracranial aneurysms evaluated by in vitro 4D flow MRI. J. Biomech. 2022, 141, 111211. [Google Scholar] [CrossRef]
- Balasundaram, H.; Sathiamoorthy, S.; Santra, S.S.; Ali, R.; Govindan, V.; Dreglea, A.; Noeiaghdam, S. Effect of Ventricular Elasticity Due to Congenital Hydrocephalus. Symmetry 2021, 13, 2087. [Google Scholar] [CrossRef]
- Kruger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method: Principles and Practice; Graduate Texts in Physics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering; Advances in Computational Fluid Dynamics; World Scientific: Singapore, 2013; Volume 3. [Google Scholar]
- Chen, S.; Doolen, G.D. Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Sakthivel, M.; Anupindi, K. An off-lattice Boltzmann method for blood flow simulation through a model irregular arterial stenosis: The effects of amplitude and frequency of the irregularity. Phys. Fluids 2021, 33, 31912. [Google Scholar] [CrossRef]
- Kang, X. Lattice Boltzmann method simulating hemodynamics in the three-dimensional stenosed and recanalized human carotid bifurcations. Sci. China Phys. Mech. Astron 2015, 58, 1–8. [Google Scholar] [CrossRef]
- Stamou, A.C.; Buick, J.M. An LBM based model for initial stenosis development in the carotid artery. J. Phys. Math. Theor. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Bernsdorf, J.; Harrison, S.; Smith, S.; Lawford, P.; Hose, D. Concurrent Numerical Simulation of Flow and Blood Clotting using the Lattice Boltzmann Technique. In Proceedings of the 11th International Conference on Parallel and Distributed Systems (ICPADS’05), Fukuoka, Japan, 20–22 July 2005; Volume 2, pp. 336–340. [Google Scholar]
- Caiazzo, A.; Evans, D.; Falcone, J.L.; Hegewald, J.; Lorenz, E.; Stahl, B.; Wang, D.; Bernsdorf, J.; Chopard, B.; Gunn, J.; et al. A Complex Automata approach for in-stent restenosis: Two-dimensional multiscale modelling and simulations. J. Comput. Sci. 2011, 2, 9–17. [Google Scholar] [CrossRef]
- Hirabayashi, M.; Ohta, M.; Rüfenacht, D.A.; Chopard, B. A lattice Boltzmann study of blood flow in stented aneurism. Future Gener. Comput. Syst. 2004, 20, 925–934. [Google Scholar] [CrossRef]
- Dandan, M.; Yong, W.; Mueed, A.; Ansgar, A.; Michael, S.; Uecker, M. In silico modeling for personalized stenting in aortic coarctation. Eng. Appl. Comput. Fluid Mech. 2022, 16, 2056–2073. [Google Scholar] [CrossRef]
- Afrouzi, H.H.; Ahmadian, M.; Hosseini, M.; Arasteh, H.; Toghraie, D.; Rostami, S. Simulation of blood flow in arteries with aneurysm: Lattice Boltzmann Approach (LBM). Comput. Methods Programs Biomed. 2020, 187, 105312. [Google Scholar] [CrossRef]
- Osaki, S.; Hayashi, K.; Kimura, H.; Seta, T.; Sasayama, T.; Tomiyama, A. Numerical Simulations of Flows in a Cerebral Aneurysm Using the Lattice Boltzmann Method with the Half-Way and Interpolated Bounce-Back Schemes. Fluids 2021, 6, 338. [Google Scholar] [CrossRef]
- Lynch, S.R.; Nama, N.; Xu, Z.; Arthurs, C.J.; Sahni, O.; Figueroa, C.A. Numerical considerations for advection-diffusion problems in cardiovascular hemodynamics. Int. J. Numer. Methods Biomed. Eng. 2020, 36, e3378. [Google Scholar] [CrossRef]
- Hughes, T.J.; Wells, G.N. Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 2005, 194, 1141–1159. [Google Scholar] [CrossRef]
- Mohammadi, V.; Dehghan, M.; Mesgarani, H. The localized RBF interpolation with its modifications for solving the incompressible two-phase fluid flows: A conservative Allen–Cahn–Navier–Stokes system. Eng. Anal. Bound. Elem. 2024, 168, 105908. [Google Scholar] [CrossRef]
- Hathcock, J.J. Flow Effects on Coagulation and Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Soulis, J.V.; Lampri, O.P.; Fytanidis, D.K.; Giannoglou, G.D. Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta. In Proceedings of the 2011 10th International Workshop on Biomedical Engineering, Kos, Greece, 5–7 October 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Frisch, U.; Hasslacher, B.; Pomeau, Y. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 1986, 56, 1505–1508. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Landau, L.; Lifshitz, E. Fluid Mechanics, 2nd ed.; Pergamon: Oxford, UK, 1987. [Google Scholar]
- Flekkøy, E. Lattice Bhatnagar-Gross-Krook models for miscible fluids. Phys. Rev. E 1993, 47, 4247. [Google Scholar] [CrossRef]
- Wolf-Gladrow, D. A lattice Boltzmann equation for diffusion. J. Stat. Phys. 1995, 79, 1023–1032. [Google Scholar] [CrossRef]
- Inamuro, T.; Yoshino, M.; Inoue, H.; Mizuno, R.; Ogino, F. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J. Comput. Phys. 2002, 179, 201–215. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2002, 65, 046308. [Google Scholar] [CrossRef]
- Chang, T.J.; Kao, H.M.; Yam, R.S.W. Lagrangian modeling of the particle residence time in indoor environment. Build. Environ. 2013, 62, 55–62. [Google Scholar] [CrossRef]
- Zhang, J.; Kwok, D.Y. Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows. Phys. Rev. E 2006, 73, 047702. [Google Scholar] [CrossRef] [PubMed]
- Bouzidi, M.; Firdaouss, M.; Lallemand, P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 2001, 13, 3452–3459. [Google Scholar] [CrossRef]
- Hashemi, J.; Patel, B.; Chatzizisis, Y.S.; Kassab, G.S. Study of Coronary Atherosclerosis Using Blood Residence Time. Front. Physiol. 2021, 12, 625420. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.; Fitz-Gerald, J.; Schroter, R. Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis. Proc. R. Soc. Lond. Ser. B 1971, 177, 109–159. [Google Scholar] [CrossRef]
- Malek, A.; Alper, S.; Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA J. Am. Med. Assoc. 2000, 282, 2035–2042. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.S.; Chien, S. Shear Stress-Initiated Signaling and Its Regulation of Endothelial Function. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2191–2198. [Google Scholar] [CrossRef]
- Zhou, M.; Yu, Y.; Chen, R.; Liu, X.; Hu, Y.; Ma, Z.; Gao, L.; Jian, W.; Wang, L. Wall shear stress and its role in atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1083547. [Google Scholar] [CrossRef]
- Phinikaridou, A.; Hua, N.; Pham, T.; Hamilton, J.A. Regions of Low Endothelial Shear Stress Colocalize with Positive Vascular Remodeling and Atherosclerotic Plaque Disruption. Circ. Cardiovasc. Imaging 2013, 6, 302–310. [Google Scholar] [CrossRef]
- Jenei, C.; Balogh, E.; Szabó, G.; Dézsi, C.; Kőszegi, Z. Wall shear stress in the development of in-stent restenosis revisited. A critical review of clinical data on shear stress after intracoronary stent implantation. Cardiol. J. 2016, 23, 365–373. [Google Scholar] [CrossRef]
- Gijsen, F.; Katagiri, Y.; Barlis, P.; Bourantas, C.; Collet, C.; Coskun, U.; Daemen, J.; Dijkstra, J.; Edelman, E.; Evans, P.; et al. Expert recommendations on the assessment of wall shear stress in human coronary arteries: Existing methodologies, technical considerations, and clinical applications. Eur. Heart J. 2019, 40, 3421–3433. [Google Scholar] [CrossRef]
- Ng, J.; Bourantas, C.; Torii, R.; Huiying, A.; Tenekecioglu-Md-Phd, E.; Serruys, P.; Foin, N. Local Hemodynamic Forces After Stenting: Implications on Restenosis and Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Gogia, S.; Neelamegham, S. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology 2015, 52, 319–335. [Google Scholar] [CrossRef] [PubMed]
Linking Physical to LB Scales: 1 m = 1 lu | |||
---|---|---|---|
Physical Size Range | Simulated Size | Lattice Units | |
Stent Height | 60 m–160 m | 100 m | 100 lu |
EC Height | 0.1 m–10 m | 1.5 m | 1.5 lu |
EC Length | 50 m–70 m | 50 m | 50 lu |
Artery Diameter | 3000 m | 3000 m | 3000 lu |
Reynolds Number | Embedded % | WSS | Shear Rate | Residence Time | ||
---|---|---|---|---|---|---|
Max (Pa) | Max () | Max (lu) | Relative Location (m) | Re-Circulation Length (m) | ||
Re = 409 | −100 | 11.4 | 5406 | 328 | (345, 72) | 45 |
0 | 9.91 | 4455 | 337 | (49, 40) | 131 | |
25 | 8.9 | 3894 | 229 | (50, 30) | 70 | |
50 | 7.41 | 3156 | 114 | (−33, 44) | 24 | |
Re = 469 | −100 | 12.4 | 5881 | 385 | (354, 60) | 117 |
0 | 10.9 | 4921 | 414 | (48, 36) | 140 | |
25 | 9.77 | 4304 | 270 | (48, 11) | 74 | |
50 | 8.15 | 3478 | 120 | (50, 1) | 25 | |
Re = 528 | −100 | 13.3 | 6319 | 441 | (366, 51) | 165 |
0 | 11.9 | 5357 | 486 | (47, 32) | 160 | |
25 | 10.6 | 4690 | 299 | (48, 11) | 77 | |
50 | 8.9 | 3781 | 120 | (50, 1) | 26 |
Reynolds Number | Embedded % | WSS | Shear Rate | Residence Time | ||
---|---|---|---|---|---|---|
Max (Pa) | Max ( ) | Max (lu) | Relative Location (m) | Re-Circulation Length (m) | ||
Re = 409 | −100 | 12.3 | 6245 | 362 | (328, 79) | 170 |
0 | 10.4 | 5053 | 360 | (51, 49) | 154 | |
25 | 9.03 | 4300 | 267 | (51, 33) | 87 | |
50 | 7.35 | 3457 | 151 | (51, 14) | 41 | |
Re = 469 | −100 | 13.3 | 6753 | 428 | (333, 67) | 231 |
0 | 11.5 | 5582 | 438 | (51, 45) | 161 | |
25 | 9.97 | 4750 | 316 | (51, 27) | 94 | |
50 | 8.09 | 3810 | 167 | (51, 9) | 43 | |
Re = 528 | −100 | 14.3 | 7218 | 495 | (337, 57) | 304 |
0 | 12.4 | 6077 | 510 | (51, 42) | 169 | |
25 | 10.9 | 5174 | 354 | (51, 24) | 99 | |
50 | 8.83 | 4143 | 172 | (51, 7) | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Waerden, R.; Spendlove, J.; Entwistle, J.; Xu, X.; Narracott, A.; Gunn, J.; Halliday, I. Analysis of Blood Stasis for Stent Thrombosis Using an Advection-Diffusion Lattice Boltzmann Scheme. Mathematics 2025, 13, 376. https://doi.org/10.3390/math13030376
van der Waerden R, Spendlove J, Entwistle J, Xu X, Narracott A, Gunn J, Halliday I. Analysis of Blood Stasis for Stent Thrombosis Using an Advection-Diffusion Lattice Boltzmann Scheme. Mathematics. 2025; 13(3):376. https://doi.org/10.3390/math13030376
Chicago/Turabian Stylevan der Waerden, Ruben, James Spendlove, James Entwistle, Xu Xu, Andrew Narracott, Julian Gunn, and Ian Halliday. 2025. "Analysis of Blood Stasis for Stent Thrombosis Using an Advection-Diffusion Lattice Boltzmann Scheme" Mathematics 13, no. 3: 376. https://doi.org/10.3390/math13030376
APA Stylevan der Waerden, R., Spendlove, J., Entwistle, J., Xu, X., Narracott, A., Gunn, J., & Halliday, I. (2025). Analysis of Blood Stasis for Stent Thrombosis Using an Advection-Diffusion Lattice Boltzmann Scheme. Mathematics, 13(3), 376. https://doi.org/10.3390/math13030376