Next Article in Journal
Cost Effectiveness Analysis of Optimal Malaria Control Strategies in Kenya
Previous Article in Journal
Existence Results for a New Class of Boundary Value Problems of Nonlinear Fractional Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Conformal Maps, Biharmonic Maps, and the Warped Product

Laboratory of Geometry, Analysis, Control and Applications, University de Saida, BP138, En-Nasr, 20000 Saida, Algeria
*
Author to whom correspondence should be addressed.
Mathematics 2016, 4(1), 15; https://doi.org/10.3390/math4010015
Submission received: 19 December 2015 / Revised: 12 February 2016 / Accepted: 23 February 2016 / Published: 8 March 2016

Abstract

:
In this paper we study some properties of conformal maps between equidimensional manifolds, we construct new example of non-harmonic biharmonic maps and we characterize the biharmonicity of some maps on the warped product manifolds.
Mathematics Subject Classifications (2000):
31B30; 58E20; 58E30

1. Introduction.

Let ϕ : ( M m , g ) ( N n , h ) be a smooth map between Riemannian manifolds. Then ϕ is said to be harmonic if it is a critical point of the energy functional :
E ( ϕ ) = 1 2 K | d ϕ | 2 d v g
for any compact subset K M . Equivalently, ϕ is harmonic if it satisfies the associated Euler-Lagrange equations :
τ ( ϕ ) = T r g d ϕ = 0 ,
and τ ( ϕ ) is called the tension field of ϕ. One can refer to [1,2,3,4] for background on harmonic maps. In the context of harmonic maps, the stress-energy tensor was studied in details by Baird and Eells in [5]. The stress-energy tensor for a map ϕ : ( M m , g ) ( N n , h ) defined by
S ( ϕ ) = e ( ϕ ) g - ϕ * h
and the relation between S ( ϕ ) and τ ( ϕ ) is given by
d i v S ( ϕ ) = - h ( τ ( ϕ ) , d ϕ ) .
The map ϕ is said to be biharmonic if it is a critical point of the bi-energy functional :
E 2 ( ϕ ) = 1 2 M | τ ( ϕ ) | 2 d v g
Equivalently, ϕ is biharmonic if it satisfies the associated Euler-Lagrange equations :
τ 2 ( ϕ ) = - T r g ϕ 2 τ ( ϕ ) - T r g R N ( τ ( ϕ ) , d ϕ ) d ϕ = 0 ,
where ϕ is the connection in the pull-back bundle ϕ - 1 ( T N ) and, if e i 1 i m is a local orthonormal frame field on M, then
T r g ϕ 2 τ ϕ = e i ϕ e i ϕ - e i e i ϕ τ ϕ ,
where we sum over repeated indices. We will call the operator τ 2 ( ϕ ) , the bi-tension field of the map ϕ. In analogy with harmonic maps, Jiang In [6] has constructed for a map ϕ the stress bi-energy tensor defined by
S 2 ( ϕ ) = - 1 2 τ ( ϕ ) 2 + d i v h τ ( ϕ ) , d ϕ g - 2 s y m h τ ( ϕ ) , d ϕ ,
where
s y m h τ ( ϕ ) , d ϕ X , Y = 1 2 h X τ ( ϕ ) , d ϕ Y + h Y τ ( ϕ ) , d ϕ X ,
for any X , Y Γ T M . The stress bi-energy tensor was also studied in [7] and those results could be useful when we study conformal maps. The stress bi-energy tensor of ϕ satisfies the following relationship
d i v S 2 ( ϕ ) = h τ 2 ( ϕ ) , d ϕ .
Clearly any harmonic map is biharmonic, therefore it is interesting to construct non-harmonic biharmonic maps. In [8] the authors found new examples of biharmonic maps by conformally deforming the domain metric of harmonic ones. While in [9] the author analyzed the behavior of the biharmonic equation under the conformal change the domain metric, she obtained metrics g ˜ = e 2 γ such that the idendity map I d : M , g M , g ˜ is biharmonic non-harmonic. Moreover, in [10] the author gave some extensions of the result in [9] together with some further constructions of biharmonic maps. The author in [11] deform conformally the codomain metric in order to render a semi-conformal harmonic map biharmonic. In [12] the authors studied the case where ϕ : M n , g N n , h is a conformal mapping between equidimensional manifolds where they show that a conformal mapping ϕ is biharmonic if and only if the gradient of its dilation satisfies a second order elliptic partial differential equation. We can refer the reader to [13], for a survey of biharmonic maps. In the first section of this paper, we present some properties for a conformal mapping ϕ : M n , g N n , h , we prove that the stress bi-energy tensor depend only on the dilation (Theorem 1) and we calculate the bitension field of ϕ (Theorem 2). In the last section we study the biharmonicity of some maps on the warped product (Theorem 4 and 5), with this setting we obtain new examples of biharmonic non-harmonic maps.

2. Some properties for conformal maps.

We study conformal maps between equidimensional manifolds of the same dimension n 3 . Note that by a result in [12], any such map can have no critical points and so is a local conformal diffeomorphism. Recall that a mapping ϕ : ( M n , g ) ( N n , h ) is called conformal if there exist a C function λ : M R + * such that for any X , Y Γ ( T M ) :
h ( d ϕ ( X ) , d ϕ ( Y ) ) = λ 2 g ( X , Y ) .
The function λ is called the dilation for the map ϕ. The tension field and the stress energy tensor for a conformal map are given by (see [14]):
Proposition 1. 
Let ϕ : ( M n , g ) ( N n , h ) be a conformal map of dilation λ, we have
( i ) d i v S ( ϕ ) = ( n - 2 ) λ 2 d ln λ ,
( i i ) d i v h ( τ ( ϕ ) , d ϕ ) = ( 2 - n ) 2 λ 2 g r a d ln λ 2 + λ 2 Δ ln λ .
( i i i ) τ ( ϕ ) = ( 2 - n ) d ϕ ( g r a d ln λ ) .
( i v ) τ ( ϕ ) 2 = ( 2 - n ) 2 λ 2 g r a d ln λ 2 .
Note that the conformal map ϕ : ( M n , g ) ( N n , h ) of dilation λ is harmonic if and only if n = 2 or the dilation λ is constant.
In the first, wa calculate the stress bi-energy tensor for a conformal map ϕ when we prove that S 2 ( ϕ ) depend only the dilation.
Theorem 1. 
Let ϕ : ( M n , g ) ( N n , h ) be a conformal map with dilation λ, then we have
S 2 ( ϕ ) = 2 - n λ 2 n - 2 2 g r a d ln λ 2 + Δ ln λ g - 2 d ln λ ,
and the trace of S 2 ( ϕ ) is given by
T r S 2 ( ϕ ) = - 2 - n 2 λ 2 n 2 g r a d ln λ 2 + Δ ln λ .
To prove Theorem 1, we need the following Lemma:
Lemma 1. 
Let ϕ : ( M n , g ) ( N n , h ) be a conformal map with dilation λ, then for any function f C ( M ) and for any X , Y Γ ( T M ) , we have
h X d ϕ g r a d f , d ϕ Y = λ 2 X ln λ Y f - Y ln λ X f + λ 2 d f X , Y + λ 2 d ln λ g r a d f g X , Y .
Proof of Lemma 1. Let f C M , for any X , Y Γ T M , we have
h X d ϕ g r a d f , d ϕ Y = X λ 2 g g r a d f , Y - h d ϕ g r a d f , X d ϕ Y = X λ 2 g g r a d f , Y + λ 2 g X g r a d f , Y + λ 2 g g r a d f , X Y - h d ϕ g r a d f , d ϕ X , Y - h d ϕ g r a d f , d ϕ X Y = X λ 2 g g r a d f , Y + λ 2 g X g r a d f , Y + λ 2 g g r a d f , X Y - h d ϕ g r a d f , d ϕ X , Y - λ 2 g g r a d f , X Y .
Note that
g X g r a d f , Y = d f X , Y ,
then we obtain
h X d ϕ g r a d f , d ϕ Y = 2 λ 2 X ln λ Y f + λ 2 d f X , Y - h d ϕ g r a d f , d ϕ X , Y .
By similary, we have
h Y d ϕ g r a d f , d ϕ X = 2 λ 2 Y ln λ X f + λ 2 d f X , Y - h d ϕ g r a d f , d ϕ X , Y .
Then, we deduce that
h X d ϕ g r a d f , d ϕ Y = h d ϕ X , Y d ϕ g r a d f + 2 λ 2 X ln λ Y f - Y ln λ X f .
For the term h d ϕ X , Y d ϕ g r a d f , we have
h Y d ϕ g r a d f , d ϕ X = h d ϕ g r a d f , Y , d ϕ X + λ 2 g Y g r a d f , X = h g r a d f d ϕ Y , d ϕ X - λ 2 g g r a d f Y , X + λ 2 g Y g r a d f , X = g r a d f λ 2 g X , Y - h g r a d f d ϕ X , d ϕ Y - λ 2 g g r a d f Y , X + λ 2 g Y g r a d f , X = 2 λ 2 d ln λ g r a d f g X , Y - h d ϕ X , g r a d f , d ϕ Y + λ 2 g Y g r a d f , X .
We deduce that
h Y d ϕ g r a d f , d ϕ X = - h X d ϕ g r a d f , d ϕ Y + 2 λ 2 d f X , Y + 2 λ 2 d ln λ g r a d f g X , Y .
Finally, if we replace (13) in (12), we obtain
h X d ϕ g r a d f , d ϕ Y = λ 2 X ln λ Y f - Y ln λ X f + λ 2 d f X , Y + λ 2 d ln λ g r a d f g X , Y .
This completes the proof of Lemma 1.
Remark 1. 
Let ϕ : ( M n , g ) ( N n , h ) be a conformal map with dilation λ, then if we consider f = ln λ , the equation (11) gives
h X d ϕ g r a d ln λ , d ϕ Y = λ 2 d ln λ X , Y + g r a d ln λ 2 g X , Y .
Proof of Theorem 1. By definition, the stress bi-energy tensor is given by :
S 2 ( ϕ ) = - 1 2 τ ( ϕ ) 2 + d i v h τ ( ϕ ) , d ϕ g - 2 s y m h τ ( ϕ ) , d ϕ .
Using the equations (2) et (4) for the Proposition 1, we have
- 1 2 τ ( ϕ ) 2 + d i v h τ ( ϕ ) , d ϕ = ( 2 - n ) λ 2 n + 2 2 g r a d ln λ 2 + Δ ln λ .
Calculate now s y m h τ ( ϕ ) , d ϕ , we have by definition for any X , Y Γ T M
s y m h τ ( ϕ ) , d ϕ X , Y = 1 2 h X τ ϕ , d ϕ Y + h Y τ ϕ , d ϕ X = 2 - n 2 h X d ϕ g r a d ln λ , d ϕ Y + h Y g r a d ln λ , d ϕ X .
By Lemma 1, we have
h X d ϕ g r a d ln λ , d ϕ Y = λ 2 d ln λ X , Y + g r a d ln λ 2 g X , Y
and
h Y d ϕ g r a d ln λ , d ϕ X = λ 2 d ln λ X , Y + g r a d ln λ 2 g X , Y ,
then
s y m h τ ( ϕ ) , d ϕ X , Y = 2 - n λ 2 d ln λ X , Y + g r a d ln λ 2 g X , Y .
If we substitute (15) and (16) in (14), we conclude that
S 2 ( ϕ ) = 2 - n λ 2 n - 2 2 g r a d ln λ 2 + Δ ln λ g - 2 d ln λ
Calculate now the trace of stress bi-energy tensor. Let ( e i ) 1 i n be an orthonormal frame on M, we have
T r g S 2 ( ϕ ) = S 2 ( ϕ ) ( e i , e i ) = 2 - n λ 2 n - 2 2 g r a d ln λ 2 + Δ ln λ g e i , e i - 2 2 - n λ 2 d ln λ e i , e i = 2 - n n λ 2 n - 2 2 g r a d ln λ 2 + Δ ln λ - 2 2 - n λ 2 Δ ln λ = 2 - n λ 2 n n - 2 2 g r a d ln λ 2 + n - 2 Δ ln λ .
Then
T r S 2 ( ϕ ) = - 2 - n 2 λ 2 n 2 g r a d ln λ 2 + Δ ln λ .
By calculating the Laplacian of the function λ n 2 and by using
Δ λ n 2 = n 2 λ n 2 n 2 g r a d ln λ 2 + Δ ln λ ,
we obtain immediately the following corollary
Corollary 1. 
Let ϕ : ( M n , g ) ( N n , h ) , ( n 2 ) to be a conformal map of dilation λ, then the trace of S 2 ( ϕ ) is zero if and only if the function λ n 2 is harmonic.
The bi-tension field of the conformal map is given by
Theorem 2. 
Let ϕ : ( M n , g ) ( N n , h ) , ( n 3 ) to be a conformal map of dilation λ, then bi-tension field of ϕ is given by :
τ 2 ( ϕ ) = n - 2 d ϕ H
where
H = g r a d Δ ln λ - n - 6 2 g r a d g r a d ln λ 2 + 2 R i c c i M g r a d ln λ - 2 Δ ln λ + n - 2 g r a d ln λ 2 g r a d ln λ .
Remark 2. 
A. Balmus in [9] studied the case where ϕ = I d M , she obtained the biharmonicity of the identity map from M , g onto M , λ 2 g , this case was also studied in [15].
To prove the Theorem 2, we need two Lemmas. In the first Lemma, we give a simple formula of the term T r g ϕ 2 d ϕ g r a d γ for a conformal map ϕ : ( M n , g ) ( N n , h ) ( n 3 ) of dilation λ and for any function γ C M .
Lemma 2. 
Let ϕ : ( M n , g ) ( N n , h ) ( n 3 ) to be a conformal map of dilation λ, then for any function γ C M , we have
T r g ϕ 2 d ϕ g r a d γ = d ϕ g r a d Δ γ + 4 d ϕ g r a d   ln λ g r a d γ + d ϕ R i c c i M g r a d γ + Δ ln λ d ϕ g r a d γ - 2 Δ γ d ϕ g r a d ln λ - n - 2 d ln λ g r a d γ d ϕ g r a d ln λ .
Proof of Lemma 2. Let γ C M , by definition, we have
T r g ϕ 2 d ϕ g r a d γ = e i ϕ e i ϕ d ϕ g r a d γ - e i e i ϕ d ϕ g r a d γ .
(Here henceforth we sum over repeated indices.) Let us start with the calculation of the term e i ϕ e i ϕ d ϕ g r a d γ , we have
e i ϕ d ϕ g r a d γ = d ϕ e i , g r a d γ + d ϕ e i g r a d γ .
It is known that (see [16])
d ϕ e i , g r a d γ = e i ln λ d ϕ g r a d γ + d ln λ g r a d γ d ϕ e i - e i γ d ϕ g r a d ln λ ,
then
e i ϕ d ϕ g r a d γ = e i ln λ d ϕ g r a d γ + d ln λ g r a d γ d ϕ e i - e i γ d ϕ g r a d ln λ + d ϕ e i g r a d γ .
It follows that
e i ϕ e i ϕ d ϕ g r a d γ = e i ϕ e i ln λ d ϕ g r a d γ + e i ϕ d ln λ g r a d γ d ϕ e i - e i ϕ e i γ d ϕ g r a d ln λ + e i ϕ d ϕ e i g r a d γ .
We will study term by term the right-hand of this expression. For the first term e i ϕ e i ln λ d ϕ g r a d γ , we have
e i ϕ e i ln λ d ϕ g r a d γ = e i ln λ e i ϕ d ϕ g r a d γ + e i e i ln λ d ϕ g r a d γ .
By using the Equation (20), we deduce that
e i ϕ e i ln λ d ϕ g r a d γ = e i ln λ e i ln λ d ϕ g r a d γ + e i ln λ d ln λ g r a d γ d ϕ e i - e i ln λ e i γ d ϕ g r a d ln λ + e i ln λ d ϕ e i g r a d γ + e i e i ln λ d ϕ g r a d γ ,
then, we obtain
e i ϕ e i ln λ d ϕ g r a d γ = g r a d   ln λ 2 d ϕ g r a d γ + d ϕ g r a d   ln λ g r a d γ + e i e i ln λ d ϕ g r a d γ .
For the second term e i ϕ d ln λ g r a d γ d ϕ e i , a similar calculation gives
e i ϕ d ln λ g r a d γ d ϕ e i = d ln λ g r a d γ e i ϕ d ϕ e i + e i g g r a d ln λ , g r a d γ d ϕ e i = d ln λ g r a d γ e i ϕ d ϕ e i + g e i g r a d ln λ , g r a d γ d ϕ e i + g g r a d ln λ , e i g r a d γ d ϕ e i = d ln λ g r a d γ e i ϕ d ϕ e i + g g r a d γ g r a d ln λ , e i d ϕ e i + g g r a d   ln λ g r a d γ , e i d ϕ e i ,
it follows that
e i ϕ d ln λ g r a d γ d ϕ e i = d ln λ g r a d γ e i ϕ d ϕ e i + d ϕ g r a d γ g r a d ln λ + d ϕ g r a d ln λ g r a d γ .
For the third term e i ϕ e i γ d ϕ g r a d ln λ , by using the same calculation method and the equation (20), we have
e i ϕ e i γ d ϕ g r a d ln λ = e i γ e i ϕ d ϕ g r a d ln λ + e i e i γ d ϕ g r a d ln λ = e i γ e i ln λ d ϕ g r a d ln λ + e i γ d ln λ g r a d ln λ d ϕ e i - e i γ e i ln λ d ϕ g r a d ln λ + e i γ d ϕ e i g r a d ln λ + e i e i γ d ϕ g r a d ln λ ,
which gives us
e i ϕ e i γ d ϕ g r a d ln λ = g r a d ln λ 2 d ϕ g r a d γ + d ϕ g r a d γ g r a d ln λ + e i e i γ d ϕ g r a d ln λ .
Now let us look at the last term e i ϕ d ϕ e i g r a d γ , a simple calculation gives
e i ϕ d ϕ e i g r a d γ = e i ln λ d ϕ e i g r a d γ + d ln λ e i g r a d γ d ϕ e i - g e i , e i g r a d γ d ϕ g r a d ln λ + d ϕ e i e i g r a d γ = 2 d ϕ g r a d ln λ g r a d γ - Δ γ d ϕ g r a d ln λ + d ϕ e i e i g r a d γ ,
then
e i ϕ d ϕ e i g r a d γ = d ϕ e i e i g r a d γ + 2 d ϕ g r a d ln λ g r a d γ - Δ γ d ϕ g r a d ln λ .
If we replace (22), (23), (24) and (25) in (21), we obtain
e i ϕ e i ϕ d ϕ g r a d γ = 4 d ϕ g r a d ln λ g r a d γ + e i e i ln λ d ϕ g r a d γ + d ln λ g r a d γ e i ϕ d ϕ e i - e i e i γ d ϕ g r a d ln λ + d ϕ e i e i g r a d γ - Δ γ d ϕ g r a d ln λ .
To complete the proof, it remains to investigate the term e i e i ϕ d ϕ g r a d γ , we have
e i e i ϕ d ϕ g r a d γ = d ϕ e i e i , g r a d γ + d ϕ e i e i g r a d γ ,
Therefore, by using the equation (20), we obtain
e i e i ϕ d ϕ g r a d γ = e i e i ln λ d ϕ g r a d γ + d ln λ g r a d γ d ϕ e i e i - e i e i γ d ϕ g r a d ln λ + d ϕ e i e i g r a d γ .
By substituting (26) and (27) in (19), we deduce
T r g ϕ 2 d ϕ g r a d γ = e i ϕ e i ϕ d ϕ g r a d γ - e i e i ϕ d ϕ g r a d γ = d ϕ T r g 2 g r a d γ + 4 d ϕ g r a d ln λ g r a d γ + Δ ln λ d ϕ g r a d γ + d ln λ g r a d γ τ ϕ - 2 Δ γ d ϕ g r a d ln λ .
Finally, using the fact that (see [11])
T r g 2 g r a d γ = g r a d Δ γ + R i c c i M g r a d γ
and
τ ϕ = 2 - n d ϕ g r a d ln λ ,
we conclude that
T r g ϕ 2 d ϕ g r a d γ = d ϕ g r a d Δ γ + 4 d ϕ g r a d ln λ g r a d γ + d ϕ R i c c i M g r a d γ + Δ ln λ d ϕ g r a d γ - 2 Δ γ d ϕ g r a d ln λ - n - 2 d ln λ g r a d γ d ϕ g r a d ln λ .
This completes the proof of Lemma 2. Now, in the second Lemma, we will calculate T r g R N d ϕ g r a d γ , d ϕ d ϕ for a conformal maps ϕ : ( M n , g ) ( N n , h ) ( n 3 ) of dilation λ and for any function γ C M
Lemma 3. 
Let ϕ : ( M n , g ) ( N n , h ) ( n 3 ) to be a conformal map of dilation λ, then for any function γ C M , we have
T r g R N d ϕ g r a d γ , d ϕ d ϕ = d ϕ R i c c i M g r a d γ - n - 2 d ϕ g r a d γ g r a d ln λ - Δ ln λ + n - 2 g r a d ln λ 2 d ϕ g r a d γ + n - 2 d ln λ g r a d γ d ϕ g r a d ln λ
Proof of Lemma 3. Let γ C M , by definition we have
T r g R N d ϕ g r a d γ , d ϕ d ϕ = R N d ϕ g r a d γ , d ϕ e i d ϕ e i
but we know that (see [16])
R i c N d ϕ X , d ϕ Y = R i c M X , Y + n - 2 X ln λ Y ln λ - n - 2 g r a d ln λ 2 g X , Y - n - 2 d ln λ X , Y - Δ ln λ g X , Y .
Then
R i c N d ϕ g r a d γ , d ϕ e i = R i c M g r a d γ , e i + n - 2 g r a d γ ln λ e i ln λ - n - 2 g r a d ln λ 2 g g r a d γ , e i - n - 2 d ln λ g r a d γ , e i - Δ ln λ g g r a d γ , e i
it follows that
R i c N d ϕ g r a d γ , d ϕ e i = R i c M g r a d γ , e i + m - 2 d ln λ g r a d γ e i ln λ - n - 2 g r a d ln λ 2 e i γ - n - 2 d ln λ g r a d γ , e i - Δ ln λ e i γ .
If we replace (30) in (29), we deduce that
T r g R N d ϕ g r a d γ , d ϕ d ϕ = R N d ϕ g r a d γ , d ϕ e i d ϕ e i = d ϕ R i c c i M g r a d γ + n - 2 d ln λ g r a d γ d ϕ g r a d ln λ - n - 2 g r a d ln λ 2 d ϕ g r a d γ - n - 2 d ln λ g r a d γ , e i d ϕ e i - Δ ln λ d ϕ g r a d γ .
To complete the proof, we will simplify the term d ln λ g r a d γ , e i d ϕ e i , we obtain
d ln λ g r a d γ , e i d ϕ e i = e i g g r a d ln λ , g r a d γ - d ln λ e i g r a d γ d ϕ e i = g e i g r a d ln λ , g r a d γ d ϕ e i = g g r a d γ g r a d ln λ , e i d ϕ e i = d ϕ g r a d γ g r a d ln λ ,
which finally gives
T r g R N d ϕ g r a d γ , d ϕ d ϕ = d ϕ R i c c i M g r a d γ - n - 2 d ϕ g r a d γ g r a d ln λ - Δ ln λ + n - 2 g r a d ln λ 2 d ϕ g r a d γ + n - 2 d ln λ g r a d γ d ϕ g r a d ln λ .
This completes the proof of Lemma 3. We are now able to prove Theorem 2.
Proof of Theorem 2. By definition, the bi-tension field is given by
τ 2 ϕ = - T r g ϕ 2 τ ϕ - T r g R N τ ϕ , d ϕ d ϕ .
The tension field of the conformal map ϕ is given by
τ ϕ = 2 - n d ϕ g r a d ln λ ,
it follows that
τ 2 ϕ = n - 2 T r g ϕ 2 d ϕ g r a d ln λ + T r g R N d ϕ g r a d ln λ , d ϕ d ϕ .
By Lemma 2, we have
T r g ϕ 2 d ϕ g r a d ln λ = d ϕ g r a d Δ ln λ + 2 d ϕ g r a d g r a d ln λ 2 - Δ ln λ d ϕ g r a d ln λ + d ϕ R i c c i M g r a d ln λ - n - 2 g r a d ln λ 2 d ϕ g r a d ln λ .
By using lemma 3 and the fact that g r a d ln λ g r a d ln λ = 1 2 g r a d g r a d ln λ 2
T r g R N d ϕ g r a d ln λ , d ϕ d ϕ = d ϕ R i c c i M g r a d ln λ - Δ ln λ d ϕ g r a d ln λ - n - 2 2 d ϕ g r a d g r a d ln λ 2 .
If we replace (32) and (33) in (31), we deduce that
τ 2 ϕ = n - 2 d ϕ g r a d Δ ln λ - n - 2 n - 6 2 d ϕ g r a d g r a d ln λ 2 - n - 2 2 Δ ln λ + n - 2 g r a d ln λ 2 d ϕ g r a d ln λ + 2 n - 2 d ϕ R i c c i M g r a d ln λ .
Then the bi-tension field of ϕ is given by :
τ 2 ( ϕ ) = n - 2 d ϕ H
where
H = g r a d Δ ln λ - n - 6 2 g r a d g r a d ln λ 2 + 2 R i c c i M g r a d ln λ - 2 Δ ln λ + n - 2 g r a d ln λ 2 g r a d ln λ .
The proof of Theorem 2 is complete. By application of Theorem 2, we get the following result (see [15]).
Theorem 3. 
([12]) Let ϕ : ( M n , g ) ( N n , h ) ( n 3 ) to be a conformal map of dilation λ, then ϕ is biharmonic if and only if the dilation λ satisfies
g r a d Δ ln λ - 2 Δ ln λ + ( n - 2 ) g r a d ln λ 2 g r a d ln λ + 6 - n 2 g r a d g r a d ln λ 2 + 2 R i c c i M ( g r a d ln λ ) = 0 .
In particular, we prove that the biharmonicity of the conformal map ϕ : ( R n , g ) ( N n , h ) ( n 3 ) where the dilation λ is radial ln λ = α r , r = x  and α C R , R is equivalent to an ordinary differential equation of the second order. More precisely, we have
Corollary 2. 
Let ϕ : ( R n , g ) ( N n , h ) ( n 3 ) to be a conformal map of dilation λ when we suppose that ln λ is radial ln λ = α r , r = x  and α C R , R . Then ϕ is biharmonic if and only if β = α satisfies the following ordinary differential equation :
β - n - 4 β β + n - 1 r β - n - 1 r 2 β - 2 n - 1 r β 2 - n - 2 β 3 = 0 .
Proof of Corollary 2 Let ϕ : ( R n , g ) ( N n , h ) ( n 3 ) to be a conformal map of dilation λ such that ln λ = α r . By Theorem 3, ϕ is biharmonic if and only if the dilation λ satisfies
g r a d Δ ln λ - 2 Δ ln λ + ( n - 2 ) g r a d ln λ 2 g r a d ln λ + 6 - n 2 g r a d g r a d ln λ 2 + 2 R i c c i M ( g r a d ln λ ) = 0 .
A direct calculation gives
g r a d ln λ = α r ,
g r a d ln λ 2 = α 2 ,
g r a d g r a d ln λ 2 = 2 α α r ,
Δ ln λ = α + n - 1 r α
and
g r a d Δ ln λ = α + n - 1 r α - n - 1 r 2 α r .
Therefore ϕ is biharmonic if and only if the function α satisfies the following differential equation
α - n - 4 α α + n - 1 r α - n - 1 r 2 α - 2 n - 1 r α 2 - n - 2 α 3 = 0 .
If we denote β = α , the biharmonicity of ϕ is equivalent to the differential equation
β - n - 4 β β + n - 1 r β - n - 1 r 2 β - 2 n - 1 r β 2 - n - 2 β 3 = 0 .
As a consequence of the Corollary 2, We will present some remarks which we give a particular solutions of the Equation (34) that allows us to construct a biharmonic non-harmonic maps.
Remark 3. 
. Looking for particular solutions of type β = a r ( a R * ). By (34), we deduce that ϕ : ( R n , g ) ( N n , h ) ( n 3 ) is biharmonic if and only if a is a solution of the algebraic equation
n - 2 a 2 + n + 2 a + 2 n - 2 = 0 .
This equation has real solutions if and only if n 3 , 4 .
  • If n = 3 , we find a = - 5 + 17 2 or a = - 5 - 17 2 , so λ = C r - 5 - 17 2 or λ = C r - 5 + 17 2 ( C R + * ). It follows that any conformal map ϕ : ( R 3 , g ) ( N 3 , h ) of dilation λ = C r - 5 - 17 2 or λ = C r - 5 + 17 2 is biharmonic non-harmonic.
  • If n = 4 , we find a = - 1 or a = - 2 , so λ = C r 2 or λ = C r ( C R + * ). Then, in this case any conformal map ϕ : ( R 4 , g ) ( N 4 , h ) of dilation λ = C r 2 or λ = C r is biharmonic non-harmonic. For example, the inversion ϕ : R n \ 0 , g R n R n \ 0 , g R n definded by ϕ x = x x 2 is a conformal map with dilation λ = 1 r 2 . By (34), the inversion is biharmonic non-harmonic if and only if n = 4 .
Remark 4. 
. Looking for particular solutions of type β = a r 1 + r 2 ( a R * ). By (34), ϕ : ( R n , g ) ( N n , h ) ( n 3 ) is biharmonic if and only we have
n - 2 a 2 + n + 2 a + 2 n - 2 = 0
and
3 n - 2 a + 2 n + 4 = 0 .
These two equations gives a = - 2 and n = 4 , it follows that the dilation is equal to λ = C r 2 + 1 ( C R + * ). Then, all conformal maps ϕ : ( R 4 , g ) ( N 4 , h ) of dilation λ = C r 2 + 1 are biharmonic non-harmonic. For example, the inverse of the stereographic projection of the sphere ϕ : R n S n definded by ϕ x = 1 x 2 + 1 x 2 - 1 , 2 x is a conformal map with dilation λ = 2 r 2 + 1 . By (34), the inverse of the stereographic projection is biharmonic non-harmonic if and only if n = 4 .
The last part of this paper is devoted to the study of biharmonic maps between warped product manifolds, these maps were also studied in [17]. We will give some results of the biharmonicity in other particular cases.

3. Biharmonic maps and the warped product

Let M m , g and N n , h two Riemannian manifolds and let f C M be a positive function. The warped product M × f N is the product manifolds M × N endowed with the Riemannian metric G f defined, for X , Y Γ T M × N , by
G f X , Y = g d π X , d π Y + f π 2 h d η X , d η Y ,
where π : M × N M and η : M × N N are respectively the first and the second projection. The function f is called the warping function of the warped product. Let X , Y Γ T M × N , X = X 1 , X 2 , Y = Y 1 , Y 2 . Denote by ∇ the Levi-Civita connection on the Riemannian product M × N . The Levi-Civita connection ˜ of the warped product M × f N is given by
˜ X Y = X Y + X 1 ln f 0 , Y 2 + Y 1 ln f 0 , X 2 - f 2 h X 2 , Y 2 g r a d ln f , 0 .
In the first, we consider a smooth map ϕ : M m , g P p , k and we defined the map ϕ ˜ : M m × f N n , G f P p , k by ϕ ˜ x , y = ϕ x . We will study the biharmonicity of ϕ ˜ . By calculating the tension field of ϕ ˜ , we obtain the following result :
Proposition 2. 
Let ϕ : M m , g P p , k be a smooth map. The tension field of the map ϕ ˜ : M m × f N n , G f P p , k defined by ϕ ˜ x , y = ϕ x is given by
τ ϕ ˜ = τ ϕ + n d ϕ g r a d ln f
Proof of Proposition 2. Let us choose e i 1 i m to be an orthonormal frame on M and f j 1 j n to be an orthonormal frame on N. An orthonormal frame on M × f N is given by e i , 0 , 1 f 0 , f j . Note that in this case we have d ϕ ˜ X , Y = d ϕ X , 0 for any X Γ T M and Y Γ T N . By definition to the tension field, we have
τ ϕ ˜ = T r G f d ϕ ˜ = e i , 0 ϕ ˜ d ϕ ˜ e i , 0 + 1 f 2 0 , f j ϕ ˜ d ϕ ˜ 0 , f j - d ϕ ˜ ˜ e i , 0 e i , 0 - 1 f 2 d ϕ ˜ ˜ 0 , f j 0 , f j .
A simple calculation gives
e i , 0 ϕ ˜ d ϕ ˜ e i , 0 = e i ϕ d ϕ e i
and
0 , f j ϕ ˜ d ϕ ˜ 0 , f j = 0 ,
By using the equation (35), we deduce that
˜ e i , 0 e i , 0 = e i e i , 0
and
˜ 0 , f j 0 , f j = 0 , f j f j - n f 2 g r a d ln f , 0 .
It follows that
τ ϕ ˜ = e i ϕ d ϕ e i - d ϕ e i M e i + n d ϕ g r a d ln f ,
then, we obtain
τ ϕ ˜ = τ ϕ + n d ϕ g r a d ln f .
Remark 5. 
If ϕ : M m , g P m , k ( m 3 ) is a conformal map with dilation λ, the tension field of ϕ ˜ is given by
τ ϕ ˜ = 2 - m d ϕ g r a d ln λ + n d ϕ g r a d ln f = d ϕ g r a d ln λ 2 - m f n .
Then ϕ ˜ is harmonic if and only if the function λ 2 - m f n is constant.
We will now calculate the bitension field of the map ϕ ˜ : M m × f N n , G f P p , k .
Theorem 4. 
Let ϕ : M m , g P p , k be a smooth map. The bitension field of the map ϕ ˜ : M m × f N n , G f P p , k defined by ϕ ˜ x , y = ϕ x is given by
τ 2 ϕ ˜ = τ 2 ϕ - n T r g 2 d ϕ g r a d ln f + T r g R p d ϕ g r a d ln f , d ϕ d ϕ - n g r a d ln f τ ϕ - n 2 g r a d ln f d ϕ g r a d ln f .
Proof of Theorem 4. By definition of the bi-tension field, we have
τ 2 ϕ ˜ = - T r G f ϕ ˜ 2 τ ϕ ˜ - T r G f R P τ ϕ ˜ , d ϕ ˜ d ϕ ˜
For the first term T r G f ϕ ˜ 2 τ ϕ ˜ , we have
T r G f ϕ ˜ 2 τ ϕ ˜ = e i , 0 ϕ ˜ e i , 0 ϕ ˜ τ ϕ ˜ + 1 f 2 0 , f j ϕ ˜ 0 , f j ϕ ˜ τ ϕ ˜ - ˜ e i , 0 e i , 0 ϕ ˜ τ ϕ ˜ - 1 f 2 ˜ 0 , f j 0 , f j ϕ ˜ τ ϕ ˜ .
We will study term by term the right-hand of this expression. A simple calculation gives
e i , 0 ϕ ˜ e i , 0 ϕ ˜ τ ϕ ˜ = e i , 0 ϕ ˜ e i , 0 ϕ ˜ τ ϕ + n e i , 0 ϕ ˜ e i , 0 ϕ ˜ d ϕ g r a d ln f = e i ϕ e i ϕ τ ϕ + n e i ϕ e i ϕ d ϕ g r a d ln f
and
0 , f j ϕ ˜ 0 , f j ϕ ˜ τ ϕ ˜ = 0 .
By using the equation (35), we obtain
˜ e i , 0 e i , 0 ϕ ˜ τ ϕ ˜ = e i M e i ϕ τ ϕ + n e i M e i ϕ d ϕ g r a d ln f ,
and
˜ 0 , f j 0 , f j ϕ ˜ τ ϕ ˜ = - n f 2 g r a d ln f ϕ τ ϕ - n 2 f 2 g r a d ln f ϕ d ϕ g r a d ln f .
Then, we deduce that
T r G f ϕ ˜ 2 τ ϕ ˜ = T r g ϕ 2 τ ϕ + n T r g ϕ 2 d ϕ g r a d ln f + n g r a d ln f ϕ τ ϕ + n 2 g r a d ln f ϕ d ϕ g r a d ln f .
To complete the proof, we will simplify the term T r G f R P τ ϕ ˜ , d ϕ ˜ d ϕ ˜ , we have
T r G f R P τ ϕ ˜ , d ϕ ˜ d ϕ ˜ = R P τ ϕ ˜ , d ϕ ˜ e i , 0 d ϕ ˜ e i , 0 + 1 f 2 R P τ ϕ ˜ , d ϕ ˜ 0 , f j d ϕ ˜ 0 , f j = R P τ ϕ ˜ , d ϕ ˜ e i , 0 d ϕ ˜ e i , 0 = R P τ ϕ , d ϕ e i d ϕ e i + n R P d ϕ g r a d ln f , d ϕ e i d ϕ e i .
It follows that
T r G f R P τ ϕ ˜ , d ϕ ˜ d ϕ ˜ = T r g R P τ ϕ , d ϕ d ϕ + n T r g R P d ϕ g r a d ln f , d ϕ d ϕ .
If we replace (39) and (40) in (38), we obtain
τ 2 ϕ ˜ = τ 2 ϕ - n T r g 2 d ϕ g r a d ln f + T r g R p d ϕ g r a d ln f , d ϕ d ϕ - n g r a d ln f τ ϕ - n 2 g r a d ln f d ϕ g r a d ln f .
The proof of Theorem 4 is complete.
Remark 6. 
Theorem 4 is a particular result of generalized warped product manifolds (see [18]).
As a consequence, if ϕ is harmonic, we have
Corollary 3. 
Let ϕ : M m , g P p , k a harmonic map. The map ϕ ˜ : M m × f N n , G f P p , k defined by ϕ ˜ x , y = ϕ x is biharmonic if and only if
T r g 2 d ϕ g r a d ln f + T r g R P d ϕ g r a d ln f , d ϕ d ϕ + n g r a d ln f d ϕ g r a d ln f = 0 .
In particular if ϕ = I d M , the first projection P 1 : M m × f N n , G f M m , g defined by P 1 x , y = x is biharmonic if and only if (see [17])
g r a d Δ ln f + n 2 g r a d g r a d ln f 2 + 2 R i c c i M g r a d ln f = 0 .
In the following we shall present an example of biharmonic non-harmonic maps.
Example 1. 
Let φ ˜ : R m \ 0 × f N n R m \ 0 defined by φ ˜ x , y = x x 2 when we suppose that ln f is radial ln f = α r . Then by Theorem 4, we deduce that the map φ ˜ : R m \ 0 × f N n R m \ 0 is biharmonic if and only if the function α satisfies the following differential equation
n α + n m - 5 r α - 3 n 3 m - 7 r 2 α + n 2 α α - 2 n 2 r α 2 - 8 m - 2 m - 4 r 3 = 0 .
Let β = α , this equation becomes
n β + n m - 5 r β - 3 n 3 m - 7 r 2 β + n 2 β β - 2 n 2 r β 2 - 8 m - 2 m - 4 r 3 = 0 .
Looking for particular solutions of type β = a r ( a R * ), then φ ˜ : R m \ 0 × f N n R m \ 0 is biharmonic if and only if
3 n 2 a 2 + 2 n 5 m - 14 a + 8 m - 2 m - 4 = 0 .
This equation has two solutions a = 4 - 2 m n and a = 4 4 - m 3 n .
1.
For a = 4 - 2 m n , we obtain f r = C r 4 - 2 m n and in this case φ ˜ : R m \ 0 × f N n R m \ 0 is harmonic so biharmonic.
2.
For a = 4 4 - m 3 n , we obtain f r = C r 4 4 - m 3 n and in this case φ ˜ : R m \ 0 × f N n R m \ 0 is biharmonic non-harmonic.
Now, we consider a smooth map ψ : N n , g P p , k and we define the map ψ ˜ : M m × f N n , G f P p , k by ψ ˜ x , y = ψ y . We will study the biharmonicity of ψ ˜ , we obtain the following result :
Theorem 5. 
Let ψ : N n , h P p , k be a smooth map, we define ψ ˜ : M m × f 2 N n , G f 2 P p , k by ψ ˜ x , y = ψ y . The tension field and the bi-tension field of ψ ˜ are given by
τ ψ ˜ = 1 f 2 π τ ψ
and
τ 2 ψ ˜ = 1 f 4 π τ 2 ψ - 2 f 2 π Δ ln f + n - 2 g r a d ln f 2 π τ ψ .
Proof of Theorem 5. In the first, we calculate the tension field of of ψ ˜ . By definition to the tension field, we have
τ ψ ˜ = T r G f d ψ ˜ = e i , 0 ψ ˜ d ψ ˜ e i , 0 + 1 f 2 π 0 , f j ψ ˜ d ψ ˜ 0 , f j - d ψ ˜ ˜ e i , 0 e i , 0 - 1 f 2 π d ψ ˜ ˜ 0 , f j 0 , f j .
By using the equation (35), we obtain
τ ψ ˜ = 1 f 2 π f j ψ d ψ f j - 1 f 2 π d ψ f j f j = 1 f 2 π τ ψ ,
then
τ ψ ˜ = 1 f 2 π τ ψ .
By this expression, we deduce that ψ ˜ is harmonic if and only if ψ is harmonic. Now, we will calculate the bi-tension field of ψ ˜ . By definition, we have
τ 2 ψ ˜ = - T r G f ψ ˜ 2 τ ψ ˜ - T r G f R P τ ψ ˜ , d ψ ˜ d ψ ˜ .
For the first term T r G f ψ ˜ 2 τ ψ ˜ , we have
T r G f ψ ˜ 2 τ ψ ˜ = e i , 0 ψ ˜ e i , 0 ψ ˜ τ ψ ˜ + 1 f 2 π 0 , f j ψ ˜ 0 , f j ψ ˜ τ ψ ˜ - ˜ e i , 0 e i , 0 ψ ˜ τ ψ ˜ - 1 f 2 π ˜ 0 , f j 0 , f j ψ ˜ τ ψ ˜ .
A long calculation gives
e i , 0 ψ ˜ e i , 0 ψ ˜ τ ψ ˜ = 2 f 2 π 2 g r a d ln f 2 - e i e i ln f π τ ψ
and
1 f 2 π 0 , f j ψ ˜ 0 , f j ψ ˜ τ ψ ˜ = 1 f 4 π f j ψ f j ψ τ ψ .
Finally, by (35), we obtain
˜ e i , 0 e i , 0 ψ ˜ τ ψ ˜ = 2 f 2 π e i e i ln f π τ ψ
and
1 f 2 π ˜ 0 , f j 0 , f j ψ ˜ τ ψ ˜ = 1 f 4 π f j f j ψ τ ψ + 2 n f 2 π g r a d ln f 2 π τ ψ .
Which gives us
T r G f ψ ˜ 2 τ ψ ˜ = 1 f 4 π T r h 2 τ ψ - 2 f 2 π Δ ln f + n - 2 g r a d ln f 2 π τ ψ
Finally for the first term T r G f R P τ ψ ˜ , d ψ ˜ d ψ ˜ , it is easy to verify that
T r G f R P τ ψ ˜ , d ψ ˜ d ψ ˜ = 1 f 4 π T r h R P τ ψ , d ψ d ψ .
If we substitute (44) and (45) in (43), we obtain
τ 2 ψ ˜ = 1 f 4 π τ 2 ψ - 2 f 2 π Δ ln f + n - 2 g r a d ln f 2 π τ ψ .
This completes the proof of Theorem 5. An immediate consequence of Theorem 5 is given by the following corollary :
Corollary 4. 
Let ψ : N n , h P p , k a biharmonic non-harmonic map. The map ϕ ˜ : M m × f N n , G f 2 P p , k defined by ψ ˜ x , y = ψ y is biharmonic if and only if the function f n - 2 is harmonic.

Acknowledgments

The authors would like to thank the referee for some useful comments and their helpful suggestions that have improved the quality of this paper.

Author Contributions

The authors provide equal contributions to this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Eells, J.; Lemaire, L. A report on harmonic maps. Bull. Lond. Math. Soc. 1978, 16, 1–68. [Google Scholar] [CrossRef]
  2. Eells, J.; Lemaire, L. Another report on harmonic maps. Bull. Lond. Math. Soc. 1988, 20, 385–524. [Google Scholar] [CrossRef]
  3. Eells, J.; Lemaire, L. Selected topics in harmonic maps; CBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1981; Vol. 150. [Google Scholar]
  4. Eells, J.; Ratto, A. Harmonic Maps and Minimal Immersions with Symmetries: Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems; Princeton University Press: Princeton, NJ, USA, 1993; Vol. 130. [Google Scholar]
  5. Baird, P.; Eells, J. A Conservation Law for Harmonic Maps; Lecture Notes in Math. 894; Springer: Berlin, Germany, 1981; pp. 1–25. [Google Scholar]
  6. Jiang, G.Y. 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. 1986, A7, 389–402. [Google Scholar]
  7. Loubeau, E.; Montaldo, S.; Oniciuc, C. The stress-energy tensor for biharmonic maps. Math. Z. 2008, 259, 503–524. [Google Scholar] [CrossRef]
  8. Baird, P.; Kamissoko, D. On constructing biharmonic maps and metrics. Ann. Glob. Anal. Geom. 2003, 23, 65–75. [Google Scholar] [CrossRef]
  9. Balmus, A. Biharmonic properties and conformal changes. Analele Stiintifice ale Univ. Al.I. Cuza Iasi Mat. 2004, 50, 367–372. [Google Scholar]
  10. Ou, Y.-L. p-harmonic morphisms, biharmonic morphisms, and non-harmonic biharmonic maps. J. Geom. Phys. 2006, 56, 358–374. [Google Scholar] [CrossRef]
  11. Ouakkas, S. Biharmonic maps, conformal deformations and the Hopf maps. Diff. Geom. Appl. 2008, 26, 495–502. [Google Scholar] [CrossRef]
  12. Baird, P.; Fardoun, A.; Ouakkas, S. Conformal and semi-conformal biharmonic maps. Ann. Glob. Anal. Geom. 2008, 34, 403–414. [Google Scholar] [CrossRef]
  13. Montaldo, S.; Oniciuc, C. A short survey of biharmonic maps between Riemannian manifolds. Rev. Union Mat. Argent. 2006, 47, 1–22. [Google Scholar]
  14. Baird, P. Harmonic Maps with Symmetry, Harmonic Morphisms and Deformation of Metrics; Research Notes in Mathematics; CRC Press: London, UK, 1983; pp. 27–39. [Google Scholar]
  15. Baird, P.; Loubeau, E.; Oniciuc, C. Harmonic and biharmonic maps from surfaces. In Harmonic maps and differential geometry; Amer. Math. Soc.: Providence, RI, USA, 2011; pp. 234–241. [Google Scholar]
  16. Baird, P.; Wood, J.C. Harmonic Morphisms between Riemannain Manifolds; London mathematical Society Monographs (N.S.); Oxford University Press: Oxford, UK, 2003. [Google Scholar]
  17. Balmus, A.; Montaldo, S.; Oniciuc, C. Biharmonic maps between warped product manifolds. J. Geom. Phys. 2007, 57, 449–466. [Google Scholar] [CrossRef]
  18. Djaa, N.E.H.; Boulal, A.; Zagane, A. Generalized warped product manifolds and biharmonic maps. Acta Math. Univ. Comen. 2012, 81, 283–298. [Google Scholar]

Share and Cite

MDPI and ACS Style

Ouakkas, S.; Djebbouri, D. Conformal Maps, Biharmonic Maps, and the Warped Product. Mathematics 2016, 4, 15. https://doi.org/10.3390/math4010015

AMA Style

Ouakkas S, Djebbouri D. Conformal Maps, Biharmonic Maps, and the Warped Product. Mathematics. 2016; 4(1):15. https://doi.org/10.3390/math4010015

Chicago/Turabian Style

Ouakkas, Seddik, and Djelloul Djebbouri. 2016. "Conformal Maps, Biharmonic Maps, and the Warped Product" Mathematics 4, no. 1: 15. https://doi.org/10.3390/math4010015

APA Style

Ouakkas, S., & Djebbouri, D. (2016). Conformal Maps, Biharmonic Maps, and the Warped Product. Mathematics, 4(1), 15. https://doi.org/10.3390/math4010015

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop