Mixed Order Fractional Differential Equations
Abstract
:1. Introduction
2. Existence Results
3. Asymptotic Results
4. Stability Result
5. Examples
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bonilla, B.; Rivero, M.; Trujillo, J.J. On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 2007, 187, 68–78. [Google Scholar] [CrossRef]
- Chalishajar, D.N.; Karthikeyan, K.; Trujillo, J.J. Existence of mild solutions for fractional impulsive semilinear integro-differential equations in Banach spaces. Commun. Appl. Nonlinear Anal. 2012, 4, 45–56. [Google Scholar]
- Chalishajar, D.N.; Karthikeyan, K. Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall’s inequality in banach spaces. Acta Math. Sci. 2013, 33, 758–772. [Google Scholar] [CrossRef]
- Chalishajar, D.N.; Karthikeyan, K. Boundary value problems for impulsive fractional evolution integro-differential equations with Gronwall’s inequality in Banach spaces. Discontin. Nonlinearity Complex. 2014, 3, 33–48. [Google Scholar] [CrossRef]
- Cong, N.D.; Doan, T.S.; Siegmund, S.; Tuan, H.T. Linearized asymptotic stability for fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 2016, 39, 1–13. [Google Scholar] [CrossRef]
- Cong, N.D.; Doan, T.S.; Siegmund, S.; Tuan, H.T. On stable manifolds for planar fractional differential equations. Appl. Math. Comput. 2014, 226, 157–168. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Škovránek, T.; Podlubny, I.; Petráš, I. Modeling of the national economies in state-space: A fractional calculus approach. Econ. Model. 2012, 29, 1322–1327. [Google Scholar] [CrossRef]
- Barreira, L.; Pesin, Y. Lectures on Lyapunov Exponents and Smooth Ergodic Theory; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Gil, M.I. Operator Functions and Localization of Spectra; Springer: Berlin, Germany, 2003. [Google Scholar]
- Varga, R.S. Geršgorin and His Circles; Springer: Berlin, Germany, 2011. [Google Scholar]
- Fečkan, M.; Kelemen, S. Multivalued integral manifolds in Banach spaces. Commun. Math. Anal. 2011, 10, 97–117. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fečkan, M.; Wang, J. Mixed Order Fractional Differential Equations. Mathematics 2017, 5, 61. https://doi.org/10.3390/math5040061
Fečkan M, Wang J. Mixed Order Fractional Differential Equations. Mathematics. 2017; 5(4):61. https://doi.org/10.3390/math5040061
Chicago/Turabian StyleFečkan, Michal, and JinRong Wang. 2017. "Mixed Order Fractional Differential Equations" Mathematics 5, no. 4: 61. https://doi.org/10.3390/math5040061
APA StyleFečkan, M., & Wang, J. (2017). Mixed Order Fractional Differential Equations. Mathematics, 5(4), 61. https://doi.org/10.3390/math5040061