Geometric Structure of the Classical Lagrange-d’Alambert Principle and Its Application to Integrable Nonlinear Dynamical Systems
Abstract
:1. The Classical Lagrange-d’Alembert Principle
2. The M.A. Buhl Problem and the Lax-Sato Type Compatible Systems of Linear Vector Field Equations
Vector FIeld Hierarchies on the Torus with “Spectral” Parameter and the Lax-Sato Integrable Heavenly Dynamical Systems
3. Examples: Integrable Heavenly Type Nonlinear Dynamical Systems
3.1. The Mikhalev-Pavlov Equation and Its Vector Field Representation
3.2. The Mikhalev–Pavlov Equation and Its Lie-Algebraic Structure
3.3. The Dunajski Metric Nonlinear Equation
3.4. The Witham Heavenly Type Equation
3.5. The Hirota Heavenly Equation
3.6. A Generalized Liouville Type Equation
3.7. The First Reduced Shabat Type Heavenly Equation
3.8. The Second Reduced Shabat Type Heavenly Equation
3.9. The Alonso-Shabat Heavenly Equation
3.10. Plebański Heavenly Equation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hentosh, O.E.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A.K. Lie-algebraic structure of Lax-Sato integrable heavenly equations and the Lagrange-d’Alembert principle. J. Geom. Phys. 2017, 120, 208–227. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J. Foundations of Mechanics, 2nd ed.; Addison-Wesley: Redwood City, CA, USA, 1987. [Google Scholar]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Godbillon, C. Geometrie Differentielle et Mecanique Analytique; Hermann Publ.: Paris, France, 1969. [Google Scholar]
- Błaszak, M. Classical R-matrices on Poisson algebras and related dispersionless systems. Phys. Lett. A 1978, 297, 191–195. [Google Scholar] [CrossRef]
- Błaszak, M.; Szablikowski, B.M. Classical R-matrix theory of dispersionless systems: II. (2 + 1) Dimension theory. J. Phys. A Math. Gen. 2002, 35, 10345. [Google Scholar] [CrossRef]
- Prykarpatsky, Y.A.; Samoilenko, A.M. Algebraic—Analytic Aspects of Integrable Nonlinear Dynamical Systems and Their Perturbations; Inst. Mathematics Publisher: Kyiv, Ukraine, 2002. v. 41. (In Ukrainian) [Google Scholar]
- Reyman, A.G.; Semenov-Tian-Shansky, M.A. Integrable Systems; Computer Research Institute Publication: Moscow-Izhevsk, Russia, 2003. (In Russian) [Google Scholar]
- Takhtajan, L.A.; Faddeev, L.D. Hamiltonian Approach in Soliton Theory; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Bogdanov, L.V.; Dryuma, V.S.; Manakov, S.V.; Dunajski, M. Generalization of the second heavenly equation: Dressing method and the hierarchy. J. Phys. A Math. Theor. 2007, 40, 14383–14393. [Google Scholar] [CrossRef]
- Manakov, S.V.; Santini, P.M. On the solutions of the second heavenly and Pavlov equations. J. Phys. A Math. Theor. 2009, 42, 404013. [Google Scholar] [CrossRef]
- Ovsienko, V. Bi-Hamilton nature of the equation utx = uxyuy − uyyux. arXiv, 2008; arXiv:0802.1818v1. [Google Scholar]
- Ovsienko, V.; Roger, C. Looped cotangent Virasoro algebra and non-linear integrable systems in dimension 2 + 1. Commun. Math. Phys. 2007, 273, 357–378. [Google Scholar] [CrossRef]
- Pavlov, M.V. Integrable hydrodynamic chains. J. Math. Phys. 2003, 44, 4134–4156. [Google Scholar] [CrossRef]
- Schief, W.K. Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation. Phys. Lett. A 1996, 223, 55–62. [Google Scholar] [CrossRef]
- Schief, W.K. Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link. In Symmetries and Integrability of Difference Equations; Clarkson, P., Nijhoff, F., Eds.; Lecture Note Series; London Mathematical Society: London, UK; Cambridge University Press: Cambridge, UK, 1999; Volume 255, pp. 137–148. [Google Scholar]
- Sergyeyev, A. A simple construction of recursion operators for multidimensional dispersionless integrable systems. J. Math. Anal. Appl. 2017, 454, 468–480. [Google Scholar] [CrossRef]
- Takasaki, K.; Takebe, T. SDiff(2) Toda equation-Hierarchy, tau function, and symmetries. Lett. Math. Phys. 1991, 23, 205–214. [Google Scholar] [CrossRef]
- Takasaki, K.; Takebe, T. Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 1995, 7, 743–808. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Konopelchenko, B.G. On the heavenly equation and its reductions. J. Phys. A Math. Gen. 2006, 39, 11793–11802. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Pavlov, M.V. Linearly degenerate hierarchies of quasiclassical SDYM type. arXiv, 2016; arXiv:1603.00238v2. [Google Scholar]
- Konopelchenko, B.G. Grassmanians Gr(N − 1,N + 1), closed differential N − 1 forms and N-dimensional integrable systems. arXiv, 2013; arXiv:1208.6129v2. [Google Scholar]
- Buhl, M.A. Surles operateurs differentieles permutables ou non. Bull. Sci. Math. 1928, S.2. t. LII, 353–361. [Google Scholar]
- Buhl, M.A. Apercus modernes sur la theorie des groupes continue et finis. Mem. Sci. Math. Paris 1928, fasc. XXXIII, 45–47. (In French) [Google Scholar]
- Pfeiffer, M.G. Sur la permutation des solutions s’une equation lineaire aux derivees partielles du premier ordre. Bull. Sci. Math. 1928, S.2. t. LII, 353–361. (In French) [Google Scholar]
- Pfeiffer, M.G. Generalisation de la methode de Jacobi pour l’integration des systems complets des equations lineaires et homogenes. Comptes Rendues de l’Academie des Sciences de l’URSS 1930, t. 190, 405–409. (In French) [Google Scholar]
- Pfeiffer, M.G. Sur la operateurs d’un systeme complet d’equations lineaires et homogenes aux derivees partielles du premier ordre d’une fonction inconnue. Comptes Rendues de l’Academie des Sciences de l’URSS 1930, 190, 909–911. (In French) [Google Scholar]
- Pfeiffer, M.G. La generalization de methode de Jacobi-Mayer. Comptes Rendues de l’Academie des Sciences de l’URSS 1930, t. 191, 1107–1109. (In French) [Google Scholar]
- Pfeiffer, M.G. Quelgues additions au probleme de M. Buhl. Atti dei Congresso Internationale dei Matematici 1928, t. III, 45–46. (In French) [Google Scholar]
- Pfeiffer, M.G. La Construction des Operateurs d’une Equation Lineaire, Homogene aux Derivees Partielles Premier Ordre; Academie des Sciences d’Ukraine: Kyiv, Ukraine, 1931. [Google Scholar]
- Popovici, C. Sur les fonctions adjointes de M. Buhl. Comptes Rendus 1907, t. 145, 749. (In French) [Google Scholar]
- Cartan, H. Differential Forms; Dover: Mineola, NY, USA, 1971. [Google Scholar]
- Coddington, E.A.; Levinson, N. Theory of Ordinary Differential Equations; McGraw-Hill: New York, NY, USA, 1955. [Google Scholar]
- Prykarpatsky, A.K.; Mykytyuk, I.V. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Mikhalev, V.G. On the Hamiltonian formalism for Korteweg—De Vries type hierarchies. Funct. Anal. Appl. 1992, 26, 140–142. [Google Scholar] [CrossRef]
- Dunajski, M. Anti-self-dual four-manifolds with a parallel real spinor. Proc. R. Soc. A 2002, 458, 1205. [Google Scholar] [CrossRef]
- Ferapontov, E.V.; Moro, A.; Sokolov, V.V. Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions. Commun. Math. Phys. 2009, 285, 31–65. [Google Scholar] [CrossRef]
- Pavlov, M.V. Integrable dispersive chains and energy dependent Schrödinger operator. arXiv, 2014; arXiv:1402.3836v2. [Google Scholar]
- Pavlov, M.V. Classification of integrable Egorov hydrodynamic chains. Theor. Math. Phys. 2004, 138, 45–58. [Google Scholar] [CrossRef]
- Morozov, O.I. A two-component generalization of the integrable rd-Dym equation. SIGMA 2012, 8, 51–56. [Google Scholar]
- Krichever, I.M. The -function of the universal Whitham hierarchy, matrix models and topological field theories. Commun. Pure Appl. Math. 1994, 47, 9205110. [Google Scholar] [CrossRef]
- Prykarpatsky, Y.A.; Prykarpatski, A.K. The integrable heavenly type equations and their Lie-algebraic structure. arXiv, 2017; arXiv:1785057. [Google Scholar]
- Dunajski, M.; Kryński, W. Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs. arXiv, 2013; arXiv:1301.0621. [Google Scholar]
- Morozov, O.I.; Sergyeyev, A. The four-dimensional Martinez-Alonso-Shabat equation: Reductions, nonlocal symmetries, and a four-dimensional integrabale generalization of the ABC equation. J. Geom. Phys. 2014, 43, 11. [Google Scholar]
- Novikov, S.P. (Ed.) Theory of Solitons: The Inverse Scattering Method; Springer: Berlin, Germany, 1984. [Google Scholar]
- Alonso, L.M.; Shabat, A.B. Hydrodynamic reductions and solutions of a universal hierarchy. Theor. Math. Phys. 1985, 104, 1073–1085. [Google Scholar]
- Plebański, J.F. Some solutions of complex Einstein equations. J. Math. Phys. 1975, 16, 2395–2402. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prykarpatski, A.K.; Hentosh, O.E.; Prykarpatsky, Y.A. Geometric Structure of the Classical Lagrange-d’Alambert Principle and Its Application to Integrable Nonlinear Dynamical Systems. Mathematics 2017, 5, 75. https://doi.org/10.3390/math5040075
Prykarpatski AK, Hentosh OE, Prykarpatsky YA. Geometric Structure of the Classical Lagrange-d’Alambert Principle and Its Application to Integrable Nonlinear Dynamical Systems. Mathematics. 2017; 5(4):75. https://doi.org/10.3390/math5040075
Chicago/Turabian StylePrykarpatski, Anatolij K., Oksana E. Hentosh, and Yarema A. Prykarpatsky. 2017. "Geometric Structure of the Classical Lagrange-d’Alambert Principle and Its Application to Integrable Nonlinear Dynamical Systems" Mathematics 5, no. 4: 75. https://doi.org/10.3390/math5040075
APA StylePrykarpatski, A. K., Hentosh, O. E., & Prykarpatsky, Y. A. (2017). Geometric Structure of the Classical Lagrange-d’Alambert Principle and Its Application to Integrable Nonlinear Dynamical Systems. Mathematics, 5(4), 75. https://doi.org/10.3390/math5040075