Modeling Mindsets with Kalman Filter
Abstract
:1. Introduction
1.1. Mental State Assessment
1.2. Mindsets in Motor Control
1.3. Modeling Mindsets by Kalman Filter
2. Materials and Methods
2.1. Participants
2.2. Material and Procedures
2.3. Research Design and Data Analysis
2.4. Apparatus and Data Collection
3. Results
3.1. Manipulation Check and Basic Behavioral Response
3.2. Basic Behavioral Analysis
3.3. Trajectory Analysis
3.4. Kalman Filter Analysis
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
Appendix A
Appendix B
a1 1 | df | AIC 2 | BIC 3 | χ2 | df (χ2) | p |
---|---|---|---|---|---|---|
Null Model | 4 | 104,105 | 104,137 | |||
Extended Model | 5 | 104,106 | 104,147 | 0.56 | 1 | 0.45 |
a2 | ||||||
Null Model | 4 | 90,326 | 90,358 | |||
Extended Model | 5 | 90,328 | 90,367 | 0.31 | 1 | 0.58 |
a3 | ||||||
Null Model | 4 | 74,488 | 74,819 | |||
Extended Model | 5 | 74,786 | 784,824 | 4.6 | 1 | 0.03 |
a4 | ||||||
Null Model | 4 | 79,372 | 79,403 | |||
Extended Model | 5 | 79,374 | 79,412 | 0.54 | 1 | 0.462 |
a5 | df | |||||
Null Model | 4 | 78,934 | 78,965 | |||
Extended Model | 5 | 78,934 | 78,973 | 1.38 | 1 | 0.24 |
a6 | ||||||
Null Model | 4 | 768,813 | 76,844 | |||
Extended Model | 5 | 76,813 | 76,853 | 1.31 | 1 | 0.25 |
a7 | ||||||
Null Model | 4 | 79,305 | 79,336 | |||
Extended Model | 5 | 79,305 | 79,344 | 1.75 | 1 | 0.19 |
a8 | ||||||
Null Model | 4 | 68,122 | 68,153 | |||
Extended Model | 5 | 68,124 | 68,153 | 0.009 | 1 | 0.92 |
a9 | df | |||||
Null Model | 4 | 71,240 | 71,271 | |||
Extended Model | 5 | 71,242 | 71,280 | 0.029 | 1 | 0.864 |
a10 | ||||||
Null Model | 4 | 85,097 | 85,128 | |||
Extended Model | 5 | 85,099 | 85,138 | 0.23 | 1 | 0.64 |
a11 | ||||||
Null Model | 4 | 106,357 | 106,390 | |||
Extended Model | 5 | 106,359 | 106,400 | 0.37 | 1 | 0.54 |
a12 | ||||||
Null Model | 4 | 86,784 | 86,915 | |||
Extended Model | 5 | 86,786 | 86,825 | 0.004 | 1 | 0.95 |
a13 | df | |||||
Null Model | 4 | 75,543 | 75,574 | |||
Extended Model | 5 | 75,544 | 75,583 | 1.05 | 1 | 0.3 |
a14 | ||||||
Null Model | 4 | 68,653 | 68,684 | |||
Extended Model | 5 | 68,652 | 68,691 | 2.68 | 1 | 0.1 |
a15 | ||||||
Null Model | 4 | 78,150 | 78,181 | |||
Extended Model | 5 | 78,151 | 78,190 | 1.24 | 1 | 0.26 |
a16 | ||||||
Null Model | 4 | 72,316 | 72,347 | |||
Extended Model | 5 | 72,317 | 72,356 | 1.14 | 1 | 0.29 |
q1 1 | df | AIC | BIC | χ2 | df (χ2) | p |
---|---|---|---|---|---|---|
Null Model | 4 | 288,521 | 288,521 | |||
Extended Model | 5 | 288,520 | 288,562 | 3.42 | 1 | 0.062 |
q2 | ||||||
Null Model | 4 | 266,757 | 266,791 | |||
Extended Model | 5 | 2,667,576 | 266,798 | 3.12 | 1 | 0.08 |
q3 | ||||||
Null Model | 4 | 146,769 | 146,799 | |||
Extended Model | 5 | 146,765 | 146,804 | 5.4 | 1 | 0.02 |
q4 | ||||||
Null Model | 4 | 192,609 | 192,641 | |||
Extended Model | 5 | 192,607 | 192,641 | 3.63 | 1 | 0.06 |
q5 | ||||||
Null Model | 4 | 266,747 | 266,780 | |||
Extended Model | 5 | 266,745 | 266,787 | 3.12 | 1 | 0.08 |
q6 | ||||||
Null Model | 4 | 288,933 | 288,967 | |||
Extended Model | 5 | 288,932 | 288,974 | 3.5 | 1 | 0.06 |
q7 | ||||||
Null Model | 4 | 156,905 | 156,937 | |||
Extended Model | 5 | 156,903 | 156,942 | 4.62 | 1 | 0.03 |
q8 | ||||||
Null Model | 4 | 184,692 | 184,724 | |||
Extended Model | 5 | 184,690 | 184,730 | 3.58 | 1 | 0.058 |
q9 | ||||||
Null Model | 4 | 146,729 | 146,759 | |||
Extended Model | 5 | 146,725 | 146,763 | 5.59 | 1 | 0.02 |
q10 | ||||||
Null Model | 4 | 156,786 | 156,817 | |||
Extended Model | 5 | 156,783 | 156,822 | 4.52 | 1 | 0.03 |
q11 | ||||||
Null Model | 4 | 288,744 | 288,778 | |||
Extended Model | 5 | 288,743 | 288,785 | 3.33 | 1 | 0.07 |
q12 | ||||||
Null Model | 4 | 263,043 | 2,633,076 | |||
Extended Model | 5 | 26,041 | 263,083 | 3.44 | 1 | 0.06 |
q13 | df | |||||
Null Model | 4 | 192,728 | 192,759 | |||
Extended Model | 5 | 192,726 | 192,766 | 3.6 | 1 | 0.06 |
q14 | ||||||
Null Model | 4 | 184,818 | 184,850 | |||
Extended Model | 5 | 184,818 | 184,956 | 3.56 | 1 | 0.06 |
q15 | ||||||
Null Model | 4 | 283,110 | 263,143 | |||
Extended Model | 5 | 263,109 | 263,150 | 3.45 | 1 | 0.06 |
q16 | ||||||
Null Model | 4 | 289,273 | 289,307 | |||
Extended Model | 5 | 289,271 | 289,314 | 3.63 | 1 | 0.057 |
h1 1 | df | AIC | BIC | χ2 | df (χ2) | p |
---|---|---|---|---|---|---|
Null Model | 4 | 86,585 | 86,614 | |||
Extended Model | 5 | 86,584 | 86,624 | 0.1 | 1 | 0.76 |
h2 | ||||||
Null Model | 4 | 22,286 | 22,312 | |||
Extended Model | 5 | 22,287 | 22320 | 0.45 | 1 | 0.49 |
h3 | ||||||
Null Model | 4 | 11,187 | 11,210 | |||
Extended Model | 5 | 11,188 | 11217 | 0.27 | 1 | 0.6 |
h4 | ||||||
Null Model | 4 | 3440.2 | 34,595 | |||
Extended Model | 5 | 3441.9 | 3466 | 0.37 | 1 | 0.54 |
h5 | ||||||
Null Model | 4 | 1719.6 | 1736 | |||
Extended Model | 5 | 1720 | 1740.5 | 1.66 | 1 | 0.2 |
h6 | ||||||
Null Model | 4 | 1351.7 | 1367.3 | |||
Extended Model | 5 | 1350.1 | 1369.6 | 3.65 | 1 | 0.06 |
h7 | ||||||
Null Model | 4 | 1336.3 | 1351.9 | |||
Extended Model | 5 | 1338.2 | 1357.7 | 0.08 | 1 | 0.77 |
h8 | ||||||
Null Model | 4 | 1259.4 | 1274.9 | |||
Extended Model | 5 | 1260.8 | 1280.1 | 0.65 | 1 | 0.42 |
r1 1 | df | AIC | BIC | χ2 | df (χ2) | p |
---|---|---|---|---|---|---|
Null Model | 4 | 162,569 | 162,602 | |||
Extended Model | 5 | 162,570 | 162,611 | 0.946 | 1 | 0.33 |
r2 | ||||||
Null Model | 4 | 163,485 | 163,518 | |||
Extended Model | 5 | 163,486 | 163,528 | 0.623 | 1 | 0.43 |
r3 | ||||||
Null Model | 4 | 163,367 | 163,400 | |||
Extended Model | 5 | 163,368 | 163,410 | 0.629 | 1 | 0.42 |
r4 | ||||||
Null Model | 4 | 166,482 | 166,515 | |||
Extended Model | 5 | 166,483 | 166,525 | 0.558 | 1 | 0.46 |
References
- Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 1954, 47, 381–391. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, I.S. Fitts’ law as a research and design tool in human-computer interaction. Hum.-Comput. Interact. 1992, 7, 91–139. [Google Scholar] [CrossRef]
- Accot, J.; Zhai, S. Performance evaluation of input devices in trajectory-based tasks: An application of the steering law. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Pittsburgh, PA, USA, 15–20 May 1999; ACM: New York, NY, USA, 1999; pp. 466–472. [Google Scholar]
- Zhai, S. Characterizing computer input with Fitts’ law parameters—The information and non-information aspects of pointing. Int. J. Hum. Comput. Stud. 2004, 61, 791–809. [Google Scholar] [CrossRef]
- Cockburn, A.; Gutwin, C. A predictive model of human performance with scrolling and hierarchical lists. Hum.–Comput. Interact. 2009, 24, 273–314. [Google Scholar] [CrossRef]
- Dweck, C.S. Self-Theories: Their Role in Motivation, Personality and Development; Psychology Press: Ann Arbor, MI, USA, 1999; ISBN 978-1-84169-024-7. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Krol, L.; Andreessen, L.; Zander, T. Passive brain-computer interfaces: A perspective on increased interactivity. In Brain-Computer Interfaces Handbook: Technological and Theoretical Advances; Nam, C.S., Nijholt, A., Lotte, F., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 69–86. [Google Scholar]
- Calvo, R.A.; D’Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 2010, 1, 18–37. [Google Scholar] [CrossRef]
- Vidulich, M.A.; Tsang, P.S. Mental workload and situation awareness. In Handbook of Human Factors and Ergonomics, 4th ed.; Salvendy, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 243–273. [Google Scholar]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wickens, C.D.; Hollands, J.G.; Banbury, S.; Parasuraman, R. Engineering Psychology & Human Performance; Routledge: London, UK, 2016. [Google Scholar]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar]
- Sterman, M.; Mann, C. Concepts and applications of EEG analysis in aviation performance evaluation. Biol. Psychol. 1995, 40, 115–130. [Google Scholar] [CrossRef]
- Hoogendoorn, R.; Hoogendoorn, S.; Brookhuis, K.; Daamen, W. Psychological elements in car-following models: Mental workload in case of incidents in the other driving lane. Procedia Eng. 2010, 3, 87–99. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Polich, J.; Comerchero, M.D. P3a from visual stimuli: Typicality, task, and topography. Brain Topogr. 2003, 15, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Gehring, W.J.; Liu, Y.; Orr, J.M.; Carp, J. The error-related negativity (ERN/Ne). In Oxford Handbook of Event-Related Potential Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 231–291. [Google Scholar]
- Hajcak, G. What we’ve learned from mistakes: Insights from error-related brain activity. Curr. Dir. Psychol. Sci. 2012, 21, 101–106. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zhang, L. An adaptive neural network approach for operator functional state prediction using psychophysiological data. Integr. Comput.-Aided Eng. 2016, 23, 81–97. [Google Scholar] [CrossRef]
- Wen, D.; Jia, P.; Lian, Q.; Zhou, Y.; Lu, C. Review of Sparse Representation-Based Classification Methods on EEG Signal Processing for Epilepsy Detection, Brain-Computer Interface and Cognitive Impairment. Front. Aging Neurosci. 2016, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, G.; Jin, J.; Zhao, Q.; Wang, X.; Cichocki, A. Sparse Bayesian classification of EEG for brain–computer interface. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2256–2267. [Google Scholar] [CrossRef] [PubMed]
- Dweck, C.S.; Chiu, C.; Hong, Y. Implicit theories and their role in judgments and reactions: A world from two perspectives. Psychoanal. Inq. 1995, 6, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.-Y.; Chiu, C.-Y.; Dweck, C.S.; Lin, D.M.S.; Wan, W. Implicit theories, attributions, and coping: A meaning system approach. J. Pers. Soc. Psychol. 1999, 77, 588–599. [Google Scholar] [CrossRef]
- Kray, L.J.; Haselhuhn, M.P. Implicit negotiation beliefs and performance: Experimental and longitudinal evidence. J. Pers. Soc. Psychol. 2007, 93, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Molden, D.C.; Dweck, C.S. Finding “meaning” in psychology: A lay theories approach to self-regulation, social perception, and social development. Am. Psychol. 2006, 61, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Robins, R.W.; Pals, J.L. Implicit self-theories in the academic domain: Implications for goal orientation, attributions, affect, and self-esteem change. Self Identity 2002, 1, 313–336. [Google Scholar] [CrossRef]
- Tabernero, C.; Wood, R.E. Implicit theories versus the social construal of ability in self-regulation and performance on a complex task. Organ. Behav. Hum. Decis. Process. 1999, 78, 104–127. [Google Scholar] [CrossRef] [PubMed]
- VandeWalle, D.; Brown, S.P.; Cron, W.L.; Slocum, J.J.W. The Influence of Goal Orientation and Self-Regulation Tactics on Sales Performance: A Longtitudinal Field Test. J. Appl. Psychol. 1999, 84, 249–259. [Google Scholar] [CrossRef]
- Yamauchi, T.; Ohno, T.; Nakatani, M.; Kato, Y.; Markman, A. Psychology of user experience in a collaborative video-conference system. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work (CSCW), Seattle, WA, USA, 11–15 February 2012; ACM: New York, NY, USA, 2012; pp. 187–196. [Google Scholar]
- Song, J.-H.; Nakayama, K. Hidden cognitive states revealed in choice reaching tasks. Trends Cogn. Sci. 2009, 13, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Yamauchi, T. Semantic Priming Revealed by Mouse Movement Trajectories. Conscious. Cognit. 2014, 27, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Yamauchi, T. Subliminal semantic priming in near absence of attention: A Cursor motion study. Conscious. Cognit. 2015, 38, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Yamauchi, T. The role of attention in subliminal semantic processing: A mouse tracking study. PLoS ONE 2017, 12, e0178740. [Google Scholar] [CrossRef] [PubMed]
- Spivey, M.J. The Continuity of Mind; Oxford University Press: Oxford, UK, 2007; ISBN 978-0-19-517078-8. [Google Scholar]
- Freeman, J.B.; Ambady, N. Motions of the hand expose the partial and parallel activation of stereotypes. Psychol. Sci. 2009, 20, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kohn, N.; Yu, N. Tracking mouse movement in feature inference: Category labels are different from feature labels. Mem. Cognit. 2007, 35, 852–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, I.K.; van Harreveld, F.; Rotteveel, M.; Topolinski, S.; van der Pligt, J.; Schwarz, N.; Koole, S.L. The path of ambivalence: Tracing the pull of opposing evaluations using mouse trajectories. Front. Psychol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Xiao, K. Reading emotion from mouse cursor motions: Affective computing approach. Cogn. Sci. 2018, 42, 771–819. [Google Scholar] [CrossRef] [PubMed]
- Leontyev, A.; Sun, S.; Wolfe, M.; Yamauchi, T. Augmented Go/No-Go Task: Mouse Cursor Motion Measures Improve ADHD Symptom Assessment in Healthy College Students. Front. Psychol. 2018, 9, 496. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, B.J.; Mangels, J.A.; Squire, L.R. A neostriatal habit learning system in humans. Science 1996, 273, 1399–1402. [Google Scholar] [CrossRef] [PubMed]
- Bergen, R.S. Beliefs about Intelligence and Achievement-Related Behaviors. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1991. [Google Scholar]
- Gibbs, B.P. Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 0470529709. [Google Scholar]
- Schweighofer, N. Computational Models in Motor Control. In From Neuron to Cognition via Computational Neuroscience; Arbib, M.A., Bonaiuto, J.J., Eds.; MIT Press: Cambridge, MA, USA, 2016; pp. 285–298. ISBN 0262034964. [Google Scholar]
- Schiff, S.J. Neural Control Engineering; MIT Press: Cambridge, MA, USA, 2012; ISBN 0262015374. [Google Scholar]
- Gallivan, J.P.; Barton, K.S.; Chapman, C.S.; Wolpert, D.M.; Flanagan, J.R. Action plan co-optimization reveals the parallel encoding of competing reach movements. Nat. Commun. 2015, 6, 7428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, P.; Huh, L. Kalman Filter for Beginners: With MATLAB Examples; CreateSpace: Scotts Valley, CA, USA, 2011; ISBN 978-1463648350. [Google Scholar]
Mindset | Inception Time | Movement Time | Response Time |
---|---|---|---|
M (SD) | M (SD) | M (SD) | |
Fixed-mindset | 386 (154) * | 1474 (308) * | 1860 (359) ** |
Growth-mindset | 435 (209) | 1573 (357) | 2010 (416) |
Features | 0.01 ≤ p <0.05 | 0.001 ≤ p <0.01 | p < 0.001 |
---|---|---|---|
Velocity | 19 | 24 | 4 |
x-position | 26 | 21 | 21 |
y-position | 34 | 23 | 18 1 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamauchi, T. Modeling Mindsets with Kalman Filter. Mathematics 2018, 6, 205. https://doi.org/10.3390/math6100205
Yamauchi T. Modeling Mindsets with Kalman Filter. Mathematics. 2018; 6(10):205. https://doi.org/10.3390/math6100205
Chicago/Turabian StyleYamauchi, Takashi. 2018. "Modeling Mindsets with Kalman Filter" Mathematics 6, no. 10: 205. https://doi.org/10.3390/math6100205
APA StyleYamauchi, T. (2018). Modeling Mindsets with Kalman Filter. Mathematics, 6(10), 205. https://doi.org/10.3390/math6100205