Generalized Hyers-Ulam Stability of Trigonometric Functional Equations
Abstract
:1. Introduction
2. Generalized Hyers–Ulam Stability of Equation (1) on Non-Abelian Semigroups
3. Generalized Hyers–Ulam Stability of Equation (6) on Non-Abelian Semigroups
Author Contributions
Acknowledgments
Conflicts of Interest
References
- D’Alembert, J. Addition au Mémoire sur la courbe que forme une corde tendue mise en vibration. Hist. Ac. Sci. Berlin, 1750, 6, 355–360. [Google Scholar]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables with Applications to Mathematics, Information Theory and to the Natural and Social Sciences; Encyclopedia of Mathematics and its Applications; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kannappan, P.L. The functional equation f(xy) + f(xy−1) = 2f(x)f(y) for groups. Proc. Am. Math. Soc. 1968, 19, 69–74. [Google Scholar]
- Dilian, Y. Factorization of cosine functions on compact connected groups. Math. Z. 2006, 254, 655–674. [Google Scholar]
- Dilian, Y. Functional equations and Fourier analysis. Can. Math. Bull. 2011, 56, 218. [Google Scholar]
- Dilian, Y. Cosine functions revisited. Banach J. Math. Anal. 2011, 5, 126–130. [Google Scholar]
- Stetkær, H. d’Alembert’s and Wilson’s functional equations on step 2-nilpotent groups. Aequ. Math. 2004, 67, 241–261. [Google Scholar] [CrossRef]
- Friis, P.d.P. d’Alembertfs and Wilsonfs functional equations on Lie groups. Aequ. Math. 2004, 67, 12–25. [Google Scholar] [CrossRef]
- Davison, T.M.K. D’Alembert’s functional equation on topological groups. Aequ. Math. 2008, 76, 33–53. [Google Scholar] [CrossRef]
- Davison, T.M.K. D’Alembert’s functional equation on topological monoids. Publ. Math. Debr. 2009, 75, 41–66. [Google Scholar]
- Stetkær, H. D’Alembert’s functional equation on groups. Banach Cent. Publ. 2013, 99, 173–191. [Google Scholar] [CrossRef]
- Ebanks, B.R. Stetkar, H. On Wilson’s functional equations. Aequ. Math. 2015, 89, 339–354. [Google Scholar] [CrossRef]
- Stetkær, H. A link between Wilson’s and d’Alembert’s functional equations. Aequ. Math. 2016, 90, 407–409. [Google Scholar] [CrossRef]
- Stetkær, H. Functional Equations on Groups; World Scientific: Hackensack, NJ, USA, 2013. [Google Scholar]
- Stetkær, H. A note on Wilson’s functional equation. Aequ. Math. 2017, 91, 945–947. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Publishers: New York, NY, USA, 1961; (Problems in Modern Mathematics; Wiley: New York, NY, USA, 1964.). [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Rassias, T.M. On the stability of linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gavruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Badora, R. On the stability of a functional equation for generalized trigonometric functions. In Functional Equations and Inequalities; Rassias, T.M., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 1–5. [Google Scholar]
- Bouikhalene, B.; Elqorachi, E. Solutions and stability of a generalization of wilson’s equation. Acta Math. Sci. 2016, 36, 791–801. [Google Scholar]
- Elqorachi, E.; Manar, Y.; Rassias, T.M. Hyers-ulam stability of the quadratic functional equation. In Functional Equations in Mathematical Analysis; Rassias, T., Brzdek, J., Eds.; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2012; Volume 52, pp. 97–105. [Google Scholar]
- Brzdek, J.; Popa, D.; Rasa, I.; Xu, B. Ulam Stability of Operators; Mathematical Analysis and its Applications; Academic Press: Cambridge, MA, USA, 2018; Volume 1. [Google Scholar]
- Forti, G.L. Hyers-Ulam stability of functional equations in several variables. Aequ. Math. 1995, 50, 143–190. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Hyers, D.H.; Rassias, T.M. Approximate homomorphisms. Aequ. Math. 1992, 44, 125–153. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.I.; Rassias, T.M. Stability of Functional Equations in Several Variables; BirkhNauser: Basel, Switzerland, 1998. [Google Scholar]
- Jung, S.-M. Stability of the quadratic equation of Pexider type. Abh. Math. Sem. Univ. Hamburg 2000, 70, 175–190. [Google Scholar] [CrossRef]
- Jung, S.-M.; Sahoo, P.K. Stability of a functional equation of Drygas. Aequ. Math. 2002, 64, 263–273. [Google Scholar] [CrossRef]
- Jung, S.-M.; Popa, D.; Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Opt. 2014, 59, 165–171. [Google Scholar] [CrossRef]
- Kim, G.H. On the stability of trigonometric functional equations. Adv. Differ. Equ. 2007, 2007, 90405. [Google Scholar] [CrossRef]
- Kim, G.H. On the stability of the Pexiderized trigonometric functional equation. Appl. Math. Comput. 2008, 203, 99–105. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Jung, S.-M.; Rassias, M.T. Uniqueness theorems on functional inequalities concerning cubic-quadratic- additive equation. J. Math. Inequal. 2018, 12, 43–61. [Google Scholar] [CrossRef]
- Rassias, J.M. On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 1982, 46, 126–130. [Google Scholar] [CrossRef]
- Rassias, J.M. Solution of a problem of Ulam. J. Approx. Theory 1989, 57, 268–273. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the functional equations and a problem of Ulam. Acta Appl. Math. 2000, 62, 23–130. [Google Scholar] [CrossRef]
- Rassias, T.M.; Tabor, J. Stability of Mappings of Hyers-Ulam Type; Hardronic Press, Inc.: Palm Harbor, FL, USA, 1994. [Google Scholar]
- Rassias, T.M. Handbook of Functional Equations; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2014; Volume 95. [Google Scholar]
- Rassias, T.M. The problem of S. M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 2000, 246, 352–378. [Google Scholar] [CrossRef]
- Baker, J.A. The stability of the cosine equation. Proc. Am. Math. Soc. 1980, 80, 411–416. [Google Scholar] [CrossRef]
- Székelyhidi, L. On a theorem of Baker, Lawrence and Zorzitto. Proc. Am. Math. Soc. 1982, 84, 95–96. [Google Scholar] [CrossRef]
- Badora, R. Stability properties of some functional equations. In Functional Equations in Mathematical Analysis; Rassias, T., Brzdek, J., Eds.; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2011; Volume 5, pp. 3–13. [Google Scholar]
- Badora, R. On the stability of some functional equations. In Proceedings of the 10th International Conference on Functional Equations and Inequalities, Bedlewo, Poland, 11–17 September 2005; p. 130. [Google Scholar]
- Bouikhalene, B.; Elqorachi, E. Stability of a generalization of Wilson’s equation. Aequ. Math. 2016, 90, 517–525. [Google Scholar]
- Bouikhalene, B.; Elqorachi, E.; Rassias, J.M. The superstability of d’Alembertfs functional equation on the Heisenberg group. Appl. Math. Lett. 2000, 23, 105–109. [Google Scholar] [CrossRef]
- Brzdek, J.; Najdecki, A.; Xu, B. Two general theorems on superstability of functional equations. Aequ. Math. 2015, 89, 771–783. [Google Scholar] [CrossRef]
- El-Fassi, I.; Brzdek, J. On the hyperstability of a pexiderized σ-quadratic functional equation on semigroups. Bull. Aust. Math. Soc. 2018. [Google Scholar] [CrossRef]
- Elqorachi, E.; Akkouchi, M. The superstability of the generalized dAlembert functional equation. Georgian Math. J. 2003, 10, 503–508. [Google Scholar]
- Elqorachi, E.; Redouani, A. Solutions and stability of generalized Kannappan’s and Van Vleck’s functional equations. Ann. Math. Sil. 2017. [Google Scholar] [CrossRef]
- Elqorachi, E.; Manar, Y.; Rassias, T.M. Hyers-ulam stability of Wilson’s functional equation. In Contributions in Mathematics and Engineering; Pardalos, P., Rassias, T., Eds.; Springer: Cham, The Natherlands, 2016; pp. 165–183. [Google Scholar]
- Ger, R. Superstability is not natural. Rocznik Nauk.-Dydakt. Prace Mat. 1993, 159, 109–123. [Google Scholar]
- Ger, R.; Semrl, P. The stability of the exponential equation. Proc. Am. Soc. 1996, 124, 779–787. [Google Scholar] [CrossRef]
- Redouani, A.; Elqorachi, E.; Rassias, T.M. The superstability of d’Alembert’s functional equation on step 2-nilpotent groups. Aequ. Math. 2007, 74, 226–241. [Google Scholar] [CrossRef]
- Zeglami, D.; Charifi, A.; Kabbaj, S. On the superstability of the pexider type generalized trigonometric functional equations. Acta Math. Sci. 2014, 34, 1749–1760. [Google Scholar] [CrossRef]
- Bouikhalene, B.; Elqorachi, E. Stability of the spherical functions. Georgian Math. J. 2016, 23, 181–190. [Google Scholar] [CrossRef]
- Akkouchi, M.; Elqorachi, E.; Sammad, K. Hyers-ulam-rassias stability on amenable groups. In Contributions in Mathematics and Engineering; Pardalos, P., Rassias, T., Eds.; Springer: Cham, The Nethelands, 2016; pp. 377–392. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis; Hadronic Press, Inc.: Palm Harbor, FL, USA, 2003. [Google Scholar]
- Greenleaf, F.P. Invariant Means on Topological Groups and their Applications; Van Nostrand: New York, NY, USA, 1969. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elqorachi, E.; Rassias, M.T. Generalized Hyers-Ulam Stability of Trigonometric Functional Equations. Mathematics 2018, 6, 83. https://doi.org/10.3390/math6050083
Elqorachi E, Rassias MT. Generalized Hyers-Ulam Stability of Trigonometric Functional Equations. Mathematics. 2018; 6(5):83. https://doi.org/10.3390/math6050083
Chicago/Turabian StyleElqorachi, Elhoucien, and Michael Th. Rassias. 2018. "Generalized Hyers-Ulam Stability of Trigonometric Functional Equations" Mathematics 6, no. 5: 83. https://doi.org/10.3390/math6050083
APA StyleElqorachi, E., & Rassias, M. T. (2018). Generalized Hyers-Ulam Stability of Trigonometric Functional Equations. Mathematics, 6(5), 83. https://doi.org/10.3390/math6050083