Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making
Abstract
:1. Introduction
2. Preliminaries
3. Neutrosophic Soft Expert Multiset (NSEM) Sets
- i.
- ,
- ii.
- for all is neutrosophic soft expert subset .
4. Basic Operations on NSEMs
- 1.
- 2.
- 3.
- 1.
- 2.
- .
- 1.
- 2.
- .
- 1.
- .
- 2.
- .
5. AND and OR Operations
- 1.
- 2.
6. NSEMs-Aggregation Operator
7. An Application of NSEMs
- Step 1-Choose a feasible subset of the set of parameters.
- Step 2-Construct the NSEMs for each opinion (agree, disagree) of expert.
- Step 3-Compute the aggregation NSEMS of and the reduced fuzzy set of
- Step 4-Score
- Step 5-Choose the element of that has maximum membership. This will be the optimal solution.
- Step 1-Choose a feasible subset of the set of parameters:
- Step 2-Construct the neutrosophic soft expert tables for each opinion (agree, disagree) of expert.
- Step 4-The final score of is computed as follows:
- Score,
- Score
- Score
- Step 5-Clearly, the maximum score is the score 0.053, shown in the above for the Hence the best decision for the experts is to select worker as the company’s employee.
8. Comparison Analysis
9. Conclusions
Author Contributions
Conflicts of Interest
References
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Set Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophic set—A generalization of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math. 2005, 24, 287–297. [Google Scholar]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, IL, USA, 1998. [Google Scholar]
- Medina, J.; Ojeda-Aciego, M. Multi-adjoint t-concept lattices. Inf. Sci. 2010, 180, 712–725. [Google Scholar] [CrossRef]
- Pozna, C.; Minculete, N.; Precup, R.E.; Kóczy, L.T.; Ballagi, Á. Signatures: Definitions, operators and applications to fuzzy modelling. Fuzzy Sets Syst. 2012, 201, 86–104. [Google Scholar] [CrossRef]
- Moallem, P.; Mousavi, B.S.; Naghibzadeh, S.S. Fuzzy inference system optimized by genetic algorithm for robust face and pose detection. Int. J. Artif. Intell. 2015, 13, 73–88. [Google Scholar]
- Jankowski, J.; Kazienko, P.; Wątróbski, J.; Lewandowska, A.; Ziemba, P.; Zioło, M. Fuzzy multi-objective modeling of effectiveness and user experience in online advertising. Expert Syst. Appl. 2016, 65, 315–331. [Google Scholar] [CrossRef]
- Alkhazaleh, S.; Salleh, A.R.; Hassan, N. Possibility fuzzy soft set. Adv. Decis. Sci. 2011, 2011, 479756. [Google Scholar] [CrossRef]
- Alkhazaleh, S.; Salleh, A.R.; Hassan, N. Soft multisets theory. Appl. Math. Sci. 2011, 5, 3561–3573. [Google Scholar]
- Salleh, A.R.; Alkhazaleh, S.; Hassan, N.; Ahmad, A.G. Multiparameterized soft set. J. Math. Stat. 2012, 8, 92–97. [Google Scholar]
- Alhazaymeh, K.; Halim, S.A.; Salleh, A.R.; Hassan, N. Soft intuitionistic fuzzy sets. Appl. Math. Sci. 2012, 6, 2669–2680. [Google Scholar]
- Adam, F.; Hassan, N. Q-fuzzy soft matrix and its application. AIP Conf. Proc. 2014, 1602, 772–778. [Google Scholar]
- Adam, F.; Hassan, N. Q-fuzzy soft set. Appl. Math. Sci. 2014, 8, 8689–8695. [Google Scholar] [CrossRef]
- Adam, F.; Hassan, N. Operations on Q-fuzzy soft set. Appl. Math. Sci. 2014, 8, 8697–8701. [Google Scholar] [CrossRef]
- Adam, F.; Hassan, N. Multi Q-fuzzy parameterized soft set and its application. J. Intell. Fuzzy Syst. 2014, 27, 419–424. [Google Scholar]
- Adam, F.; Hassan, N. Properties on the multi Q-fuzzy soft matrix. AIP Conf. Proc. 2014, 1614, 834–839. [Google Scholar]
- Adam, F.; Hassan, N. Multi Q-fuzzy soft set and its application. Far East J. Math. Sci. 2015, 97, 871–881. [Google Scholar] [CrossRef]
- Varnamkhasti, M.; Hassan, N. A hybrid of adaptive neurofuzzy inference system and genetic algorithm. J. Intell. Fuzzy Syst. 2013, 25, 793–796. [Google Scholar]
- Varnamkhasti, M.; Hassan, N. Neurogenetic algorithm for solving combinatorial engineering problems. J. Appl. Math. 2012, 2012, 253714. [Google Scholar] [CrossRef]
- Maji, P.K. Neutrosophic soft set. Ann. Fuzzy Math. Inform. 2013, 5, 157–168. [Google Scholar]
- Alkhazaleh, S.; Salleh, A.R. Fuzzy soft expert set and its application. Appl. Math. 2014, 5, 1349. [Google Scholar] [CrossRef]
- Hassan, N.; Alhazaymeh, K. Vague soft expert set theory. AIP Conf. Proc. 2013, 1522, 953–958. [Google Scholar]
- Alhazaymeh, K.; Hassan, N. Mapping on generalized vague soft expert set. Int. J. Pure Appl. Math. 2014, 93, 369–376. [Google Scholar] [CrossRef]
- Adam, F.; Hassan, N. Multi Q-Fuzzy soft expert set and its applications. J. Intell. Fuzzy Syst. 2016, 30, 943–950. [Google Scholar] [CrossRef]
- Sahin, M.; Alkhazaleh, S.; Ulucay, V. Neutrosophic soft expert sets. Appl. Math. 2015, 6, 116–127. [Google Scholar] [CrossRef]
- Hassan, N.; Uluçay, V.; Şahin, M. Q-neutrosophic soft expert set and its application in decision making. Int. J. Fuzzy Syst. Appl. 2018, 7, 37–61. [Google Scholar] [CrossRef]
- Broumi, S.; Deli, I.; Smarandache, F. Neutrosophic parametrized soft set theory and its decision making. Int. Front. Sci. Lett. 2014, 1, 1–11. [Google Scholar] [CrossRef]
- Deli, I. Refined Neutrosophic Sets and Refined Neutrosophic Soft Sets: Theory and Applications. In Handbook of Research on Generalized and Hybrid Set Structures and Applications for Soft Computing; IGI Global: Hershey, PA, USA, 2016; p. 321. [Google Scholar]
- Syropoulos, A. On generalized fuzzy multisets and their use in computation. Iran. J. Fuzzy Syst. 2012, 9, 113–125. [Google Scholar]
- Shinoj, T.K.; John, S.J. Intuitionistic fuzzy multisets and its application in mexdical diagnosis. World Acad. Sci. Eng. Technol. 2012, 6, 1–28. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Ye, S.; Ye, J. Dice similarity measure between single valued neutrosophic multisets and its application in medical diagnosis. Neutrosophic Sets Syst. 2014, 6, 48–52. [Google Scholar]
- Riesgo, Á.; Alonsoa, P.; Díazb, I.; Montesc, S. Basic operations for fuzzy multisets. Int. J. Approx. Reason. 2018, 101, 107–118. [Google Scholar] [CrossRef]
- Sebastian, S.; John, R. Multi-fuzzy sets and their correspondence to other sets. Ann. Fuzzy Math. Inform. 2016, 11, 341–348. [Google Scholar]
- Uluçay, V.; Deli, I.; Şahin, M. Intuitionistic trapezoidal fuzzy multi-numbers and its application to multi-criteria decision-making problems. In Complex & Intelligent Systems; Springer: Berlin, Germany, 2018; pp. 1–14. [Google Scholar]
- Kunnambath, S.T.; John, S.J. Compactness ın ıntuıtıonıstıc fuzzy multıset topology. J. New Theory 2017, 16, 92–101. [Google Scholar]
- Dhivya, J.; Sridevi, B. A New Similarity Measure between Intuitionistic Fuzzy Multisets based on their Cardinality with Applications to Pattern Recognition and Medical Diagnosis. Asian J. Res. Soc. Sci. Humanit. 2017, 7, 764–782. [Google Scholar] [CrossRef]
- Ejegwa, P.A. On Intuitionistic fuzzy multisets theory and its application in diagnostic medicine. MAYFEB J. Math. 2017, 4, 13–22. [Google Scholar]
- Fan, C.; Fan, E.; Ye, J. The Cosine Measure of Single-Valued Neutrosophic Multisets for Multiple Attribute Decision-Making. Symmetry 2018, 10, 154. [Google Scholar] [CrossRef]
- Şahin, M.; Deli, I.; Ulucay, V. Extension principle based on neutrosophic multi-sets and algebraic operations. J. Math. Ext. 2018, 12, 69–90. [Google Scholar]
- Al-Quran, A.; Hassan, N. Neutrosophic vague soft multiset for decision under uncertainty. Songklanakarin J. Sci. Technol. 2018, 40, 290–305. [Google Scholar]
- Hu, Q.; Zhang, X. New Similarity Measures of Single-Valued Neutrosophic Multisets Based on the Decomposition Theorem and Its Application in Medical Diagnosis. Symmetry 2018, 10, 466. [Google Scholar] [CrossRef]
- Şahin, M.; Uluçay, V.; Olgun, N.; Kilicman, A. On neutrosophic soft lattices. Afr. Mat. 2017, 28, 379–388. [Google Scholar]
- Şahin, M.; Olgun, N.; Kargın, A.; Uluçay, V. Isomorphism theorems for soft G-modules. Afr. Mat. 2018, 29, 1237–1244. [Google Scholar] [CrossRef]
- Ulucay, V.; Şahin, M.; Olgun, N. Time-Neutrosophic Soft Expert Sets and Its Decision Making Problem. Matematika 2018, 34, 246–260. [Google Scholar] [CrossRef]
- Uluçay, V.; Kiliç, A.; Yildiz, I.; Sahin, M. A new approach for multi-attribute decision-making problems in bipolar neutrosophic sets. Neutrosophic Sets Syst. 2018, 23, 142–159. [Google Scholar]
- Uluçay, V.; Şahin, M.; Hassan, N. Generalized neutrosophic soft expert set for multiple-criteria decision-making. Symmetry 2018, 10, 437. [Google Scholar] [CrossRef]
p | 0.1136 | 0.1267 | 0.093 |
q | 0.1142 | 0.0933 | 0.015 |
p | 0.1631 | 0.1468 | 0.1386 |
q | 0.1155 | 0.0933 | 0.04 |
Fuzzy Soft Expert | Neutrosophic Soft Set | Neutrosophic Soft Expert | Q-Neutrosophic Soft Expert | Generalized Neutrosophic Soft Expert | NSEMs | |
---|---|---|---|---|---|---|
Methods | Alkhazaleh and Salleh [22] | Maji [21] | Sahin et al. [26] | Hassan et al. [27] | Ulucay et al. [48] | Proposed Method in this paper |
Domain | Universe of discourse | Universe of discourse | Universe of discourse | Universe of discourse | Universe of discourse | Universe of discourse |
True | Yes | Yes | Yes | Yes | Yes | Yes |
Falsity | No | Yes | Yes | Yes | No | No |
Indeterminacy | No | Yes | Yes | Yes | No | No |
Expert | Yes | No | Yes | Yes | Yes | No |
Q | No | No | No | Yes | Yes | Yes |
Ranking | ||||||
Membershipvalued | Membership-valued | Single-valued | single-valued | Single-valued | Single-valued | Multi-valued |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakbak, D.; Uluçay, V.; Şahin, M. Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making. Mathematics 2019, 7, 50. https://doi.org/10.3390/math7010050
Bakbak D, Uluçay V, Şahin M. Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making. Mathematics. 2019; 7(1):50. https://doi.org/10.3390/math7010050
Chicago/Turabian StyleBakbak, Derya, Vakkas Uluçay, and Memet Şahin. 2019. "Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making" Mathematics 7, no. 1: 50. https://doi.org/10.3390/math7010050
APA StyleBakbak, D., Uluçay, V., & Şahin, M. (2019). Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making. Mathematics, 7(1), 50. https://doi.org/10.3390/math7010050