A Class of Nonlinear Fuzzy Variational Inequality Problems
Abstract
:1. Introduction
2. Preliminaries
2.1. Fuzzy Set Theory
- (1)
- normality, ,
- (2)
- monotonicity, ,
- (3)
- for , we have .
- (1)
- (2)
2.2. Approximation Method
3. The Property of
- (1)
- there exists an integrable function and a neighborhood of satisfying
- (2)
- is semi-smooth at for ;
- (3)
- there exist an integrable function and a neighborhood of satisfying
- (1)
- there exist an integrable function , such that , satisfying
- (2)
- For , is function on . There is nonnegative function such that , satisfying is Lipschitz continuous,
- (3)
- There exists an integrable function and of satisfying
4. Convergence of the FERM Model
4.1. Convergence of Global Optimal Solutions
4.2. Convergence of Stationary Points
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.-A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Prade, H. The mean value of a fuzzy number. Fuzzy Sets Syst. 1987, 24, 279–300. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fussy Sets and Systems; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Dubois, D.; Prade, H. Possibility Theory: Qualitative and Quantitative Aspects. Quantified Representation of Uncertainty and Imprecision; Springer: Dordrecht, The Netherlands, 1998; pp. 169–226. [Google Scholar]
- Cho, S.-Y.; Qin, X.; Yao, J.-C.; Yao, Y. Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 251–264. [Google Scholar]
- Dubois, D.; Prade, H. Comment on tolerance analysis using fuzzy sets and a procedure for multiple aspect decision making. Internat. J. Syst. Sci. 1978, 9, 357–360. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, R.; Xu, H.-K. Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 2010, 72, 3447–3456. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.-C.; Kang, S.-M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 2010, 59, 3472–3480. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Prade, H. Additions of interactive fuzzy numbers. IEEE Trans. Autom. Control 1981, 26, 926–936. [Google Scholar] [CrossRef]
- Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Postolache, M.; Liou, Y.-C. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 2013, 201. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.-L.; Cho, Y.-J.; Rassias, T.-M. The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. 2018, 12, 1871–1896. [Google Scholar] [CrossRef]
- Li, C.-L.; Jia, Z.-F. Expected residual minimization method for uncertain variational inequality problems. J. Nonlinear Sci. Appl. 2017, 10, 5958–5975. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-S.; Zhu, Y.-G. On variational inequalities for fuzzy mappings. Fuzzy Sets Syst. 1989, 32, 359–367. [Google Scholar] [CrossRef]
- Huang, N.-J. Random generalized nonlinear variational inclusions for random fuzzy mappings. Fuzzy Sets Syst. 1999, 105, 437–444. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Liou, Y.C.; Yao, J.-C. Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J. Nonlinear Sci. Appl. 2017, 10, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.S.; Lee, G.M.; Cho, S.J.; Kim, D.S. A variational inequality for fuzzy mappings. In Proceedings of the Fifth Fuzzy Systems Association World Congress, Seoul, Korea, 4–9 July 1993; pp. 326–329. [Google Scholar]
- Inuiguchi, M.; Ichihashi, H.; Kume, Y. A solution algorithm for fuzzy linear programming with piecewise linear membership functions. Fuzzy Sets Syst. 1990, 34, 15–31. [Google Scholar] [CrossRef]
- Hu, C.-F.; Fang, S.-C. Solving fuzzy inequalities with concave membership functions. Fuzzy Sets Syst. 1998, 99, 233–240. [Google Scholar] [CrossRef]
- Fang, S.-C.; Hu, C.-F. Solving fuzzy variational inequalities. Fuzzy Optim. Decis. Mak. 2002, 1, 113–133. [Google Scholar] [CrossRef]
- Hu, C.-F. Solving Systems of Fuzzy Inequalities. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 1997. [Google Scholar]
- Hu, C.-F. Solving variational inequalities in a fuzzy environment. J. Math. Anal. Appl. 2000, 249, 527–538. [Google Scholar] [CrossRef]
- Wang, H.-F.; Liao, H.-L. Variational inequality with fuzzy convex cone. J. Glob. Optim. 1999, 14, 395–414. [Google Scholar] [CrossRef]
- Wang, H.-F.; Liao, H.-L. Fuzzy resolution on the infeasibility of variational inequality. Eur. J. Oper. Res. 1998, 106, 198–203. [Google Scholar] [CrossRef]
- Huang, N.-J. A new method for a class of nonlinear variational inequalities with fuzzy mappings. Appl. Math. Lett. 1997, 10, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpath. J. Math. 2018, 34, 459–466. [Google Scholar]
- Yao, Y.; Liou, Y.-C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Postolache, M.; Liou, Y.-C.; Yao, Z.-S. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
- Cubiotti, P.; Yao, J.-C. Discontinuous implicit quasi-variational inequalities with applications to fuzzy mappings. Math. Methods Oper. Res. 1997, 46, 213–228. [Google Scholar] [CrossRef]
- Fang, S.-C.; Hu, C.-F.; Wang, H.-F.; Wu, S.-Y. Linear programming with fuzzy coefficients in constraints. Comput. Math. Appl. 1999, 37, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Jan, G.-M.; Sheu, R.-L.; Wu, S.-Y. Maximum feasibility problem for continuous linear inequalities with applications to fuzzy linear programming. Fuzzy Optim. Decis. Mak. 2003, 2, 297–316. [Google Scholar] [CrossRef]
- Liou, Y.-C.; Wu, S.-Y.; Yao, J.-C. Bilevel decision with generalized semi-infinite optimization for fuzzy mappings as lower level problems. Fuzzy Optim. Decis. Mak. 2005, 4, 41–50. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Lan, H.-Y. An approach for solving fuzzy implicit variational inequalities with linear membership functions. Comput. Math. Appl. 2008, 55, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.Z.; Xu, J.P. A Class of Fuzzy Variational Inequality Based on Monotonicity of Fuzzy Mappings. Abstr. Appl. Anal. 2013, 2013, 854751. [Google Scholar] [CrossRef]
- Tang, G.-J.; Zhao, T.; Wan, Z.P.; He, D.-X. Existence results of a perturbed variational inequality with a fuzzy mapping. Fuzzy Sets Syst. 2018, 331, 68–77. [Google Scholar] [CrossRef]
- Fukushima, M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 1992, 53, 99–110. [Google Scholar] [CrossRef]
- Apostol, T.-M. Mathematical Analysis; Addison-Wesley: Boston, MA, USA, 1957. [Google Scholar]
- Qi, L.; Shapiro, A.; Ling, C. Differentiability and semismoothness properties of integral functions and their applications. Math. Program. 2005, 102, 223–248. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Jia, Z.; Liou, Y.-C. A Class of Nonlinear Fuzzy Variational Inequality Problems. Mathematics 2019, 7, 54. https://doi.org/10.3390/math7010054
Li C, Jia Z, Liou Y-C. A Class of Nonlinear Fuzzy Variational Inequality Problems. Mathematics. 2019; 7(1):54. https://doi.org/10.3390/math7010054
Chicago/Turabian StyleLi, Cunlin, Zhifu Jia, and Yeong-Cheng Liou. 2019. "A Class of Nonlinear Fuzzy Variational Inequality Problems" Mathematics 7, no. 1: 54. https://doi.org/10.3390/math7010054
APA StyleLi, C., Jia, Z., & Liou, Y. -C. (2019). A Class of Nonlinear Fuzzy Variational Inequality Problems. Mathematics, 7(1), 54. https://doi.org/10.3390/math7010054