On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces
Abstract
:1. Introduction and Main Results
2. Proof of the Direct Theorem
3. Proofs of the Inverse and Equivalent Theorems
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bardaro, C.; Mantellini, I. On convergence properties for a class of Kantorovich discrete operators. Numer. Funct. Anal. Optim. 2012, 33, 374–396. [Google Scholar] [CrossRef]
- Costarelli, D.; Vinti, G. Convergence for a family of neural network operators in Orlicz spaces. Math. Nachr. 2017, 290, 226–235. [Google Scholar] [CrossRef]
- Costarelli, D.; Vinti, G. Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting. Math. Slovaca 2017, 67, 1469–1480. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018, 112. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 2018, 34, 459–466. [Google Scholar]
- Ueki, S.-I. On the Li-Stević integral type operators from weighted Bergman spaces into β-Zygmund spaces. Integral Equ. Oper. Theory 2012, 74, 137–150. [Google Scholar] [CrossRef]
- Li, H.; Ma, T. Products of composition operators and integral-type operators from Zygmund-type spaces to QK spaces. Math. Notes 2016, 99, 261–271. [Google Scholar] [CrossRef]
- Liang, Y.-X. Integral-type operators from F(p, q, s) space to α-Bloch-Orlicz and β-Zygmund-Orlicz spaces. Complex Anal. Oper. Theory 2018, 12, 169–194. [Google Scholar] [CrossRef]
- Gupta, V.; Yadav, R. Approximation by complex summation-integral type operator in compact disks. Math. Slovaca 2013, 63, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Vural, İ; Altın, B.; Yüksel, İ. Schurer generalization of q-hybrid summation integral type operators. In Computational Analysis; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2016; pp. 179–194. [Google Scholar] [CrossRef]
- Govil, N.K.; Gupta, V. Simultaneous Approximation for Stancu-Type Generalization of Certain Summation-Integral-Type Operators. In Analytic Number Theory, Approximation Theory, and Special Functions; Springer: New York, NY, USA, 2014; pp. 531–548. [Google Scholar]
- Srivastava, H.M.; Gupta, V. A certain family of summation-integral type operators. Math. Comput. Model. 2003, 37, 1307–1315. [Google Scholar] [CrossRef]
- Gupta, V.; Mohapatra, R.N.; Finta, Z. A certain family of mixed summation-integral type operators. Math. Comput. Model. 2005, 42, 181–191. [Google Scholar] [CrossRef]
- Han, L.X.; Wu, G. Approximation by modified summation integral type operators in Orlicz spaces. Math. Appl. 2017, 30, 613–622. [Google Scholar]
- Rao, M.M.; Ren, Z.D. Theory of Orlicz Space; Monographs and Textbooks in Pure and Applied Mathematics, 146; Marcel Dekker, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Han, L.X.; Wu, G. Strong converse inequality of Jacobi weighted simultaneous approximation for gamma operators in Orlicz spaces (0, ∞). Appl. Math. J. Chin. Univ. Ser. A 2016, 31, 366–378. (In Chinese) [Google Scholar]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer Series in Computational Mathematics, 9; Springer: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Costarelli, D.; Spigler, R. How sharp is the Jensen inequality? J. Inequal. Appl. 2015, 2015, 69. [Google Scholar] [CrossRef]
- van Wickeren, E. Weak-type inequalities for Kantorovitch polynomials and related operators. Nederl. Akad. Wetensch. Indag. Math. 1987, 90, 111–120. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.-X.; Qi, F. On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces. Mathematics 2019, 7, 6. https://doi.org/10.3390/math7010006
Han L-X, Qi F. On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces. Mathematics. 2019; 7(1):6. https://doi.org/10.3390/math7010006
Chicago/Turabian StyleHan, Ling-Xiong, and Feng Qi. 2019. "On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces" Mathematics 7, no. 1: 6. https://doi.org/10.3390/math7010006
APA StyleHan, L. -X., & Qi, F. (2019). On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces. Mathematics, 7(1), 6. https://doi.org/10.3390/math7010006