Extending the Applicability of Two-Step Solvers for Solving Equations
Abstract
:1. Introduction
2. Definitions and Auxiliary Lemmas
3. Convergence
4. The Uniqueness Ball for the Solution of Equations
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Methods; Elsevier (Academic Press): New York, NY, USA, 2018. [Google Scholar]
- Argyros, I.K.; Magréñan, A.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Hernandez, M.A.; Rubio, M.J. The Secant method for nondifferentiable operators. Appl. Math. Lett. 2002, 15, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Ren, H.; Argyros, I.K. A new semilocal convergence theorem for a fast iterative method with nondifferentiable operators. J. Appl. Math. Comp. 2010, 34, 39–46. [Google Scholar] [CrossRef]
- Shakhno, S.M. About the difference method with quadratic convergence for solving nonlinear operator equations. Matematychni Studii 2006, 26, 105–110. (In Ukrainian) [Google Scholar]
- Shakhno, S.M. On the secant method under generalized Lipschitz conditions for the divided difference operator. Proc. Appl. Math. Mech. 2007, 7, 2060083–2060084. [Google Scholar] [CrossRef]
- Bartish, M.Y. About one iterative method of solving functional equations. Dopov. Acad. Nauk Ukr. RSR. Ser. A 1968, 5, 387–391. (In Ukrainian) [Google Scholar]
- Bartish, M.Y.; Shcherbyna, Y.M. About one difference method of solving operator equations. Dopov. Acad. Nauk Ukr. RSR. Ser. A 1972, 7, 579–582. (In Ukrainian) [Google Scholar]
- Shakhno, S.M. On a two-step iterative process under generalized Lipschitz conditions for first-order divided differences. J. Math. Sci. 2010, 168, 576–584. [Google Scholar] [CrossRef]
- Argyros, I.K.; Hilout, S. Newton-Kantorovich approximations under weak continuity conditions. J. Appl. Math. Comput. 2011, 37, 361–375. [Google Scholar] [CrossRef]
- Zabrejko, P.P.; Nguen, D.F. The majorant method in the theory of Newton-Kantorovich approximations and the Ptâk error estimates. Numer. Funct. Anal. Optim. 1987, 9, 671–684. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Cătinas, E. On some iterative methods for solving nonlinear equations. Revue d’Analyse Numérique et de Theorie de l’Approximation. 1994, 23, 47–53. [Google Scholar]
- Shakhno, S.M.; Mel’nyk, I.V.; Yarmola, H.P. Analysis of the convergence of a combined method for the solution of nonlinear equations. J. Math. Sci. 2014, 201, 32–43. [Google Scholar] [CrossRef]
- Shakhno, S.M. Combined Newton-Kurchatov method under the generalized Lipschitz conditions for the derivatives and divided differences. J. Comput. Appl. Math. Kiev. 2015, 2, 78–89. [Google Scholar]
- Shakhno, S.M.; Yarmola, H.P. Two-point method for solving nonlinear equation with nondifferentiable operator. Matematychni Studii 2011, 36, 213–222. (In Ukrainian) [Google Scholar]
- Shakhno, S.; Yarmola, H. Two-step method for solving nonlinear equations with nondifferentiable operator. J. Comput. Appl. Math. Kiev. 2012, 3, 105–115. [Google Scholar] [CrossRef]
- Shakhno, S.M. Convergence of the two-step combined method and the uniqueness of solution of the nonlinear operator equations. J. Comput. Appl. Math. 2014, 261, 378–386. [Google Scholar] [CrossRef]
- Chen, X.; Nashed, Z.; Qi, L. Convergence of Newton’s method for singular smooth and nonsmoot hequations using adaptive outher inverses. SIAM J. Optim. 1997, 7, 445–462. [Google Scholar] [CrossRef]
- Chen, X.; Yamamoto, T. Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optim. 1989, 10, 37–48. [Google Scholar] [CrossRef]
- Esquerro, J.A.; Hernández, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Frontiers in Mathematics; Birkhäuser: Basel, Schwitzerland, 2017. [Google Scholar]
- Elber, G.; Kim, M.S. Geometric constraint solver using multivariate rational spline functions. In Proceedings of the 6th ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, USA, 4–8 June 2001; pp. 1–10. [Google Scholar]
- Aizenshtein, M.; Bartoň, M.; Elber, G. Global solutions of well-constrained transcendental systems using expression trees and a single solution test. Comput. Aided Geom. Des. 2012, 29, 265–279. [Google Scholar] [CrossRef]
- Bartoň, M. Solving polynomial systems using no-root elimination blending schemes. Comput.-Aided Des. 2011, 43, 1870–1878. [Google Scholar] [CrossRef]
- Morgan, A.P. A homotopy for solving polynomial systems. Appl. Math. Comput. 1986, 18, 87–92. [Google Scholar] [CrossRef]
- Morgan, A.; Sommese, A. Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput. 1987, 24, 115–138. [Google Scholar] [CrossRef]
- Wang, X. Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 2000, 20, 123–134. [Google Scholar] [CrossRef]
- Werner, W. Über ein Verfahren der Ordnung zur Nullstellenbestimmung. Numer. Math. 1979, 32, 333–342. [Google Scholar] [CrossRef]
- Shakhno, S.M. Convergence of the two-step Newton type method for solving of nonlinear equations under the generalized Lipschitz conditions. Phys.-Math. Model. Inf. Technol. 2012, 16, 163–172. (In Ukrainian) [Google Scholar]
- Shakhno, S.M. On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. J. Comp. App. Math. 2009, 231, 222–235. [Google Scholar] [CrossRef] [Green Version]
p | ε | Method | |||
---|---|---|---|---|---|
(3) | (4) | (38) | (6) | ||
1 | 85 | 7 | 10 | 7 | |
266 | 10 | 12 | 8 | ||
10 | 102 | 110 | 25 | 14 | |
284 | 20 | 27 | 16 | ||
100 | 110 | 28 | 39 | 23 | |
292 | 30 | 41 | 24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Shakhno, S. Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics 2019, 7, 62. https://doi.org/10.3390/math7010062
Argyros IK, Shakhno S. Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics. 2019; 7(1):62. https://doi.org/10.3390/math7010062
Chicago/Turabian StyleArgyros, Ioannis K., and Stepan Shakhno. 2019. "Extending the Applicability of Two-Step Solvers for Solving Equations" Mathematics 7, no. 1: 62. https://doi.org/10.3390/math7010062
APA StyleArgyros, I. K., & Shakhno, S. (2019). Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics, 7(1), 62. https://doi.org/10.3390/math7010062