Convergence Ball and Complex Geometry of an Iteration Function of Higher Order
Abstract
:1. Introduction
2. Local Convergence
- (i)
- In view of ()
- (ii)
3. Numerical Experiments
4. Complex Dynamics of Method
- attractor if ,
- superattractor if ,
- repuslor if ,
- parabolic if .
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Argyros, I.K. Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, 15; Chui, C.K., Wuytack, L., Eds.; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Argyros, I.K.; Hilout, S. Computational Methods in Nonlinear Analysis; World Scientific Publishing Company: Hackensack, NJ, USA, 2013. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Argyros, I.K.; Sharma, J.R.; Kumar, D. Local convergence of Newton-Gauss method in Banach spaces. SeMA 2017, 74, 429–439. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magreñán, Á.A. Iterative Methods and Their Dynamics with Applications: A Contemporary Study; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Babajee, D.K.R.; Dauhoo, M.Z.; Darvishi, M.T.; Barati, A. A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput. 2008, 200, 452–458. [Google Scholar] [CrossRef]
- Chun, C.; Stănică, P.; Neta, B. Third-order family of methods in Banach spaces. Comput. Math. Appl. 2011, 61, 1665–1675. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Magreñán, Á.A.; Romero, N. On the semilocal convergence of Newton-Kantrovich method under center–Lipschitz conditions. Appl. Math. Comput. 2013, 221, 79–88. [Google Scholar]
- Hasanov, V.I.; Ivanov, I.G.; Nebzhibov, F. A new modification of Newton’s method. Appl. Math. Eng. 2002, 27, 278–286. [Google Scholar]
- Alzahrani, A.K.H.; Behl, R.; Alshomrani, A. Some higher-order iteration functions for solving nonlinear models. Appl. Math. Comput. 2018, 334, 80–93. [Google Scholar] [CrossRef]
- Cordero, A.; Gómez, E.; Torregrosa, J.R. Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems. Complexity 2017, 2017, 6457532. [Google Scholar] [CrossRef]
- Babajee, D.K.R.; Madhu, K.; Jayaraman, J. On some improved harmonic mean Newton-like methods for solving systems of nonlinear equations. Algorithms 2015, 8, 895–909. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 199, 686–698. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Barati, A. A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 2007, 187, 630–635. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernańdez, M.A. Newton’s Method: An Updated Approach of Kantrovich’s Theory; Frontiers in Mathematics; Birkhausor: Cham, Switzerland, 2017. [Google Scholar]
- Jaiswal, J.P. Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algor. 2016, 71, 933–951. [Google Scholar] [CrossRef]
- Lotfi, T.; Bakhtiari, P.; Cordero, A.; Mahdiani, K.; Torregrosa, J.R. Some new efficient multipoint iterative methods for solving nonlinear systems of equations. Int. J. Comput. Math. 2015, 92, 1921–1934. [Google Scholar] [CrossRef]
- Lotfi, T.; Sharifi, S.; Salimi, M.; Siegmund, S. A new class of three-point methods with optimal convergence order eight and its dynamics. Numer. Algor. 2015, 68, 261–288. [Google Scholar] [CrossRef]
- Madhu, K.; Babajee, D.K.R.; Jayaraman, J. An improvement to double–step Newton method and its multi-step version for solving system of nonlinear equations and its applications. Numer. Algor. 2017, 74, 593–607. [Google Scholar] [CrossRef]
- Narang, M.; Bhatia, S.; Kanwar, V. New two–parameter Chebyshev–Halley–like family of fourth and sixth–order methods for systems of nonlinear equations. Appl. Math. Comput. 2016, 275, 394–403. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Kantrovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Hoffman, J.D. Numerical Methods for Engineers and Scientists; McGraw-Hill Book Company: New York, NY, USA, 1992. [Google Scholar]
- Gopalan, V.B.; Seader, J.D. Application of interval Newton’s method to chemical engineering problems. Reliab. Comput. 1995, 13, 215–223. [Google Scholar]
- Shacham, M. An improved memory method for the solution of a nonlinear equation. Chem. Eng. Sci. 1989, 44, 1495–1501. [Google Scholar] [CrossRef]
- Constantinides, A.; Mostoufi, N. Numerical Methods for Chemical Engineers with Matlab Applications; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Magreñán, Á.A. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Scott, M.; Neta, B.; Chun, C. Basin attractors for various methods. Appl. Math. Comput. 2011, 218, 2584–2599. [Google Scholar] [Green Version]
- Traub, J.F. Dynamics in One Complex Variable; Annals of Mathematics Studies. 160; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Argyros, I.K.; Sharma, J.R. Convergence Ball and Complex Geometry of an Iteration Function of Higher Order. Mathematics 2019, 7, 28. https://doi.org/10.3390/math7010028
Kumar D, Argyros IK, Sharma JR. Convergence Ball and Complex Geometry of an Iteration Function of Higher Order. Mathematics. 2019; 7(1):28. https://doi.org/10.3390/math7010028
Chicago/Turabian StyleKumar, Deepak, Ioannis K. Argyros, and Janak Raj Sharma. 2019. "Convergence Ball and Complex Geometry of an Iteration Function of Higher Order" Mathematics 7, no. 1: 28. https://doi.org/10.3390/math7010028
APA StyleKumar, D., Argyros, I. K., & Sharma, J. R. (2019). Convergence Ball and Complex Geometry of an Iteration Function of Higher Order. Mathematics, 7(1), 28. https://doi.org/10.3390/math7010028