A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Application
Abstract
:1. Introduction
2. Basics of Quaternion Numbers
3. Properties of Dynamical Behavior of Model (3)
3.1. Generalization of Hamiltonian for (4)
3.2. Invariance and Symmetry of (4)
3.3. Signal Flow Graph of (4)
3.4. Dissipation
3.5. Stability of Equilibria
3.6. Lyapunov Exponents
3.7. Bifurcation Diagram of (4)
4. Simulink Simulation and Design of Electronic Circuit
5. AAS for Chaotic Quaternion Nonlinear Systems
5.1. Chaotic Quaternion Nonlinear Systems
5.2. Design Plan for AAS Quaternion Controller
5.3. Example
5.4. Results of Numerical Analysis
5.5. Secure Communication via AAS
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lam, T.Y. Hamilton’s quaternions. Handb. Algebra 2003, 3, 429–454. [Google Scholar]
- Al-Zhour, Z. Some new linear representations of matrix quaternions with some applications. J. King Saud Univ. Sci. 2017, 31, 42–47. [Google Scholar] [CrossRef]
- Vaidyanathan, S. Analysis adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system via backstepping control method. Arch. Control Sci. 2016, 26, 311–338. [Google Scholar] [CrossRef]
- Voss, H.U. Anticipating chaotic synchronization. Phys. Rev. 2000, 61, 5115. [Google Scholar] [CrossRef] [PubMed]
- Voss, H.U. Dynamic long-term anticipation of chaotic states. Phys. Rev. Lett. 2001, 87, 014102. [Google Scholar] [CrossRef] [PubMed]
- Masoller, A.P.C. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 2001, 86, 2782. [Google Scholar] [CrossRef] [PubMed]
- Pyragienė, T.; Pyragas, K. Anticipating synchronization in a chain of chaotic oscillators with switching parameters. Phys. Lett. 2015, 379, 3084–3088. [Google Scholar] [CrossRef]
- Mousa, S.K.; Al Naimee, K.A. Experimental investigations of Synchronization in two optically coupled chaotic systems utilizing optical feedback and optical injection. J. Univ. Anbar Pure Sci. 2017, 11, 49–56. [Google Scholar]
- Pavlos, G.P.; Karakatsanis, L.P.; Xenakis, M.N. Tsallis non-extensive statistics intermittent turbulence SOC and chaos in the solar plasma Part one Sunspot dynamics. Phys. Stat. Mech. Appl. 2012, 391, 6287–6319. [Google Scholar] [CrossRef]
- Roy, A.; Misra, A.P.; Banerjee, S. Chaos-based image encryption using vertical-cavity surface-emitting lasers. Optik 2019, 176, 119–131. [Google Scholar] [CrossRef]
- Fen, M.O. Persistence of chaos in coupled Lorenz systems Chaos. Solitons Fractals 2017, 95, 200–205. [Google Scholar] [CrossRef]
- Li, J.; Lu, M.; Zhang, W.; Qian, Y. A new butterfly attractor based on Chua’s circuit and its application in security communication. In Proceedings of the 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), Xi’an, China, 22–25 October 2013; Volume 10, pp. 1–4. [Google Scholar]
- Sprott, J.C.; Chen, G. Coexistence of point periodic and strange attractors. Int. J. Bifurc. Chaos 2013, 23, 1350093. [Google Scholar] [CrossRef]
- Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37. [Google Scholar] [CrossRef]
- Strogatz, S.; Friedman, M.; Mallinckrodt, A.J.; McKay, S. Nonlinear dynamics and chaos with applications to physics biology chemistry and engineering. Comput. Phys. 1994, 8, 532. [Google Scholar] [CrossRef]
- Wahab, H.B.A.; Abed, T.M. E-commerce Application Based on Visual Cryptography and Chen’s Hyperchaotic. Iraqi J. Sci. 2018, 59, 617–628. [Google Scholar]
- Pham, V.T.; Volos, C.K. Advances and Applications in Chaotic Systems; Springer: Berlin, Germany, 2016; Volume 636. [Google Scholar]
- Sparrow, C. The Lorenz Equations Bifurcations Chaos and Strange Attractors; Springer: Berlin, Germany, 2012; Volume 41. [Google Scholar]
- Mahmoud, E.E. Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Comput. Model. 2012, 55, 951–1962. [Google Scholar] [CrossRef]
- Pehlivan, I.; Yilmaz, U. A new chaotic attractor from general Lorenz system family and its electronic experimental implementation. Turk. J. Electr. Eng. Comput. Sci. 2010, 18, 171–184. [Google Scholar]
- Mahmoud, E.E.; Al-Adwani, M.A. Dynamical behaviors, control and synchronization of a new chaotic model with complex variables and cubic nonlinear terms. Results Phys. 2017, 7, 1346–1356. [Google Scholar] [CrossRef]
- Korenberg, M.J.; Hunter, I.W. The identification of nonlinear biological systems: Volterra kernel approaches. Ann. Biomed. Eng. 1996, 24, 250–268. [Google Scholar] [CrossRef]
- Mahmoud, G.M.; Mahmoud, E.E. Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dyn. 2013, 73, 2231–2240. [Google Scholar] [CrossRef]
- Mahmoud, E.E.; Abood, F.S. A new nonlinear chaotic complex model and its complex antilag synchronization. Complexity 2017, 2017, 13p. [Google Scholar] [CrossRef]
- Mahmoud, E.E.; Abo-Dahab, S.M. Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model. Solitons Fractals 2018, 106, 273–284. [Google Scholar] [CrossRef]
- Mahmoud, E.E. Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems. Math. Methods Appl. Sci. 2014, 37, 321–328. [Google Scholar] [CrossRef]
- Hu, J.; Chunna, Z.; Tan, J. Boundedness and periodicity for linear threshold discrete-time quaternion-valued neural network with time-delays. Neurocomputing 2017, 267, 417–425. [Google Scholar] [CrossRef]
- Finkelstein, D.; Jauch, J.M.; Schiminovich, S.; Speiser, D. Foundations of quaternion quantum mechanics. J. Math. Phys. 1962, 3, 207–220. [Google Scholar] [CrossRef]
- Catoni, F.; Cannata, R.; Zampetti, P. An introduction to commutative quaternions. Adv. Appl. Clifford Algebr. 2006, 16, 1–28. [Google Scholar] [CrossRef]
- Tweed, D.; Douglas, W.; Vilis, T. Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vis. Res. 1990, 30, 97–110. [Google Scholar] [CrossRef]
- Song, G.J.; Wang, Q.W.; Yu, S.W. Cramer’s rule for a system of quaternion matrix equations with applications. Appl. Math. Comput. 2018, 336, 490–499. [Google Scholar] [CrossRef]
- Frenkel, I.; Libine, M. Quaternionic analysis representation theory and physics. Adv. Math. 2008, 218, 1806–1877. [Google Scholar] [CrossRef]
- Girard, P.R. The quaternion group and modern physics. Eur. J. Phys. 1984, 5, 25. [Google Scholar] [CrossRef]
- Aydın, F.T. Bicomplex Fibonacci quaternions Chaos. Solitons Fractals 2018, 106, 147–153. [Google Scholar] [CrossRef]
- Quezada-Téllez, L.A.; Carrillo-Moreno, S.; Rosas-Jaimes, O.; Flores-Godoy, J.J.; Fernndez-Anaya, G. Dynamic analysis of a Lü model in six dimensions and its projections. Int. J. Nonlinear Sci. Numer. Simul. 2017, 18, 371–384. [Google Scholar] [CrossRef]
- Schmid, H.; Huber, A. Analysis of switched-capacitor circuits using driving-point signal-flow graphs. Analog Integr. Circuits Signal Process 2018, 96, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Jordan, D.W. Nonlinear Ordinary Differential Equations Problems and Solutions; Oxford University Press: Oxford, UK, 2007; pp. 523–528. [Google Scholar]
- Hu, G. Generating hyperchaotic attractors with three positive lyapunov exponents via state feedback control. Int. J. Bifurc. Chaos 2009, 19, 651–660. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Frederickson, P.; Kaplan, J.L.; Yorke, E.D.; Yorke, J.A. The Liapunov dimension of strange attractors. J. Differ. Equ. 1983, 49, 185–207. [Google Scholar] [CrossRef]
- Mahmoud, E.E.; AL-Harthi, B.H. A phenomenal form of complex synchronization and chaotic masking communication between two identical chaotic complex nonlinear structures with unknown parameters. Results Phys. 2019, 14, 102452. [Google Scholar] [CrossRef]
- Huang, C.; Cao, J. Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system. Stat. Mech. Appl. 2017, 473, 262–275. [Google Scholar] [CrossRef]
- Ma, J.; Li, F.; Huang, L.; Jin, W.Y. Complete synchronization phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3770–3785. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, J.; Wu, R.; Alsaadi, F.E.; Alsaedi, A. Lag projective synchronization of fractional-order delayed chaotic systems. J. Frankl. Inst. 2019, 356, 1522–1534. [Google Scholar] [CrossRef]
- Huang, T.; Gao, D.; Li, C.; Xiao, M.Q. Anticipating synchronization through optimal feedback control. J. Glob. Optim. 2012, 52, 281–290. [Google Scholar] [CrossRef]
- Mahmoud, E.E.; Abualnaja, K.M.; Althagafi, O.A. High dimensional, four positive Lyapunov exponents and attractors with four scroll during a new hyperchaotic complex nonlinear model. AIP Adv. 2018, 8, 065018. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, E.E.; AL-Harthi, B.H. Secure communications via modified complex phase synchronization of two hyperchaotic complex models with identical linear structure and adjusting in nonlinear terms. J. Intell. Fuzzy Syst. 2019, 37, 17–25. [Google Scholar] [CrossRef]
- Mahmoud, G.M.; Mahmoud, E.E.; Arafa, A.A. Projective synchronization for coupled partially linear complex-variable systems with known parameters. Math. Methods Appl. Sci. 2017, 40, 1214–1222. [Google Scholar] [CrossRef]
- Sahina, M.E.; Camh, Z.G.; Gulerce, H.; Hamamci, S.E. Simulation and Circuit Implementation Memristive Chaotic System and Its Application for Secure Communication Systems. Sens. Actuators Phys. 2019, 290, 107–118. [Google Scholar] [CrossRef]
- Ekhande, R.; Deshmukh, S. Chaotic Signal for Signal Masking in Digital Communications. Int. Org. Sci. Res. J. Eng. 2014, 4, 29–33. [Google Scholar] [CrossRef]
Attractor | |||||||||
---|---|---|---|---|---|---|---|---|---|
− | − | − | − | − | − | − | − | − | Fixed point |
+ | 0 | 0 | 0 | 0 | − | − | − | − | Chaotic |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, E.E.; Higazy, M.; Al-Harthi, T.M. A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Application. Mathematics 2019, 7, 877. https://doi.org/10.3390/math7100877
Mahmoud EE, Higazy M, Al-Harthi TM. A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Application. Mathematics. 2019; 7(10):877. https://doi.org/10.3390/math7100877
Chicago/Turabian StyleMahmoud, Emad E., M. Higazy, and Turkiah M. Al-Harthi. 2019. "A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Application" Mathematics 7, no. 10: 877. https://doi.org/10.3390/math7100877
APA StyleMahmoud, E. E., Higazy, M., & Al-Harthi, T. M. (2019). A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Application. Mathematics, 7(10), 877. https://doi.org/10.3390/math7100877