Variation Inequalities for One-Sided Singular Integrals and Related Commutators
Abstract
:1. Introduction
- (i)
- for any and , it holds that
- (ii)
- for any , and , it holds that
- (iii)
- for a weight w satisfying and , it holds that
- (i)
- One-sided weighted Morrey spaces are defined by
- (ii)
- One-sided weighted Campanato spaces are given by
- (i)
- for any , , and ,
- (ii)
- for any , , and ,
2. Preliminaries
- (i)
- Let and . Then, for all and ,
- (ii)
- Let and . Then, for all , and ,
- (i)
- , where and on for each i;
- (ii)
- , where ;
- (iii)
- and ;
- (iv)
- for each i, and ;
- (v)
- .
3. Proofs of Main Results
4. -Jump Operators and the Number of Up-Crossing
- (i)
- for any , and ,
- (ii)
- for any , , and ,
5. Conclusions and Further Comments
Author Contributions
Funding
Conflicts of Interest
References
- Aimar, H.; Forzani, L.; Martín-Reyes, F.J. On weighted inequalities for singular integrals. Proc. Am. Math. Soc. 1997, 125, 2057–2064. [Google Scholar] [CrossRef]
- Bourgain, J. Pointwise ergodic theorems for arithmetric sets. Inst. Hautes Études Sci. Publ. Math. 1989, 69, 5–45. [Google Scholar] [CrossRef]
- Campbell, J.T.; Jones, R.L.; Reinhdd, K.; Wierdl, M. Oscillation and variation for the Hilbert transform. Duke Math. J. 2000, 105, 59–83. [Google Scholar] [Green Version]
- Campbell, J.T.; Jones, R.L.; Reinhdd, K.; Wierdl, M. Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 2003, 355, 2115–2137. [Google Scholar] [CrossRef]
- Crescimbeni, R.; Martín-Reyes, F.J.; Torre, A.L.; Torrea, J.L. The ρ-variation of the Hermitian Riesz transform. Acta Math. Sin. Engl. Ser. 2010, 26, 1827–1838. [Google Scholar] [CrossRef]
- Ding, Y.; Hong, G.; Liu, H. Jump and variational inequalities for rough operators. J. Fourier Anal. Appl. 2017, 23, 679–711. [Google Scholar] [CrossRef]
- Fu, Z.; Lu, S.; Sato, S.; Shi, S. On weighted weak type norm inequalities for one-sided oscillatory singular integrals. Stud. Math. 2011, 207, 137–150. [Google Scholar] [CrossRef]
- Fu, Z.; Lu, S.; Shi, S.; Pan, Y. Some one-sided estimates for oscillatory singular integrals. Nonlinear Anal. 2014, 108, 144–160. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, T.A.; Torrea, J.L. Dimension free estimates for the oscillation of Riesz transforms. Israel J. Math. 2004, 141, 125–144. [Google Scholar] [CrossRef]
- Harboure, E.; Macías, R.A.; Menárguez, M.T.; Torrea, J.L. Oscillation and variation for the Gaussian Riesz transforms and Poisson integral. Proc. R. Soc. Edinb. 2005, 135A, 85–104. [Google Scholar] [CrossRef]
- Jones, R.L. Variation inequalities for singular integrals and related operators. Contemp. Math. 2006, 411, 89–121. [Google Scholar]
- Jones, R.L.; Kaufman, R.; Rosenblatt, J.; Wierdl, M. Oscillation in ergodic theory. Ergod. Theory Dyn. Syst. 1998, 18, 889–935. [Google Scholar] [CrossRef]
- Jones, R.L.; Rosenblatt, J.; Wierdl, M. Oscillation in ergodic theory: Higher dimensional results. Israel J. Math. 2003, 135, 1–27. [Google Scholar] [CrossRef]
- Jones, R.L.; Seeger, A.; Wright, J. Strong variational and jump inequalities in harmonic analysis. Trans. Am. Math. Soc. 2008, 360, 6711–6742. [Google Scholar] [CrossRef] [Green Version]
- Lépingle, D. La variation d’ordre p des semi-martingales. Zeitschrift für Wahrscheinlichkeitstheori Verwandte Gebiete 1976, 36, 295–316. [Google Scholar] [CrossRef]
- Liu, F. On the regularity of one-sided fractional maximal functions. Math. Slovaca 2018, 68, 1097–1112. [Google Scholar] [CrossRef]
- Liu, F.; Mao, S. On the regularity of the one-sided Hardy–Littlewood functions. Czechoslov. Math. J. 2017, 67, 219–234. [Google Scholar] [CrossRef]
- Liu, F.; Xu, L. Regularity of one-sided multilinear fractional maximal functions. Open Math. 2018, 16, 1556–1572. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wu, H. A criterion on oscillation and variation for the commutators of singular integral operators. Forum Math. 2015, 27, 77–97. [Google Scholar] [CrossRef]
- Lorente, M.; Riveros, M.S. Weighted inequalities for commutators of one-sided singular integrals. Comment. Math. Univ. Carolinae 2002, 43, 83–101. [Google Scholar]
- Ma, T.; Torrea, J.L.; Xu, Q. Weighted variation inequalities for differential operators and singular integrals. J. Funct. Anal. 2015, 268, 376–416. [Google Scholar] [CrossRef]
- Ma, T.; Torrea, J.L.; Xu, Q. Weighted variation inequalities for differential operators and singular integrals in higher dimensions. Sci. China Math. 2017, 60, 1419–1442. [Google Scholar] [CrossRef] [Green Version]
- Martín-Reyes, F.J.; de la Torre, A. One-sided BMO spaces. J. Lond. Math. Soc. 1994, 49, 529–542. [Google Scholar] [CrossRef]
- Le Merdy, C.; Xu, Q. Strong q-variation inequalities for analytic semigroups. Ann. Inst. Fourier 2012, 62, 2069–2097. [Google Scholar] [CrossRef]
- Pisier, G.; Xu, Q. The strong p-variation of martingales and orthogonal series. Probab. Theory Relat. Fields 1988, 77, 497–514. [Google Scholar] [CrossRef]
- Sawyer, E. Weighted inequalities for the one-sided Hardy–Littlewood maximal functions. Trans. Am. Math. Soc. 1986, 291, 53–61. [Google Scholar] [CrossRef]
- Shi, S.G.; Fu, Z.W. Estimates of some operators on one-sided weighted Morrey spaces. Abstr. Appl. Anal. 2013, 2013, 829218. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H. Oscillation and variation inequalities for singular integrals and commutators on weighted Morrey spaces. Front. Math. China 2016, 11, 423–447. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Jhang, S.; Oh, S.-K.; Fu, Z. Variation Inequalities for One-Sided Singular Integrals and Related Commutators. Mathematics 2019, 7, 876. https://doi.org/10.3390/math7100876
Liu F, Jhang S, Oh S-K, Fu Z. Variation Inequalities for One-Sided Singular Integrals and Related Commutators. Mathematics. 2019; 7(10):876. https://doi.org/10.3390/math7100876
Chicago/Turabian StyleLiu, Feng, Seongtae Jhang, Sung-Kwun Oh, and Zunwei Fu. 2019. "Variation Inequalities for One-Sided Singular Integrals and Related Commutators" Mathematics 7, no. 10: 876. https://doi.org/10.3390/math7100876
APA StyleLiu, F., Jhang, S., Oh, S. -K., & Fu, Z. (2019). Variation Inequalities for One-Sided Singular Integrals and Related Commutators. Mathematics, 7(10), 876. https://doi.org/10.3390/math7100876