Next Article in Journal
A Statistical Investigation into Assembly Tolerances of Gradient Field Magnetic Angle Sensors with Hall Plates
Next Article in Special Issue
Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method
Previous Article in Journal
A High Accurate and Stable Legendre Transform Based on Block Partitioning and Butterfly Algorithm for NWP
Previous Article in Special Issue
Dynamic Properties of Foreign Exchange Complex Network
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications

1
Department of Mathematics, Government College for Girls Sector 14, Gurugram 122001, India
2
Department of Mathematics, Maharshi Dayanand University, Rohtak 124001, India
3
Research Center for Complex Systems and Network Sciences, School of Mathematics, Southeast University, Nanjing 210096, China
4
School of Mathematics and Statistics, Changsha University of Science and Technology, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha 410114, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2019, 7(10), 967; https://doi.org/10.3390/math7100967
Submission received: 8 September 2019 / Revised: 4 October 2019 / Accepted: 9 October 2019 / Published: 14 October 2019
(This article belongs to the Special Issue Impulsive Control Systems and Complexity)

Abstract

:
In this paper, we obtain multifractals (attractors) in the framework of Hausdorff b-metric spaces. Fractals and multifractals are defined to be the fixed points of associated fractal operators, which are known as attractors in the literature of fractals. We extend the results obtained by Chifu et al. (2014) and N.A. Secelean (2015) and generalize the results of Nazir et al. (2016) by using the assumptions imposed by Dung et al. (2017) to the case of ciric type generalized multi-iterated function system (CGMIFS) composed of ciric type generalized multivalued G-contractions defined on multifractal space C ( U ) in the framework of a Hausdorff b-metric space, where U = U 1 × U 2 × × U N , N being a finite natural number. As an application of our study, we derive collage theorem which can be used to construct general fractals and to solve inverse problem in Hausdorff b-metric spaces which are more general spaces than Hausdorff metric spaces.

1. Introduction

Dynamic systems characterization has been intensively investigated in diverse areas of physics [1,2,3,4,5], population biology [6,7,8,9,10], neural networks [11,12,13,14], mathematical modeling [15,16,17], etc. Especially fractals and multifractals play an important role in applications such as signal and image compression, creation of digital photographs, soil mechanics, fluid mechanics, computer graphics and so on. Most of these fractals and multifractals are obtained by using iterated function (or multifunction) systems (IFS). In 1981, Hutchinson [18] defined iterated function systems (IFS) and Barnsley [19] enriched the theory of IFS. This theory is known as Hutchinson–Barnsley (HB) theory. Hutchinson defined IFS as a finite collection of contractive self mappings and introduced HB operator on hyperspace of nonempty compact sets. He defined the unique fixed point of HB operator as a fractal (attractor). Thus, fixed point theory plays prominent role in the construction of fractals. For years, IFS has been an emerging technique for researchers to generate and analyze new fractal objects. In the sequel, numerous developments and extensions of IFS to construct fractals and similar sets are made (see, e.g., [20,21,22] and references therein).
Banach contraction principle [23] contributed a lot in fixed point theory. Several researchers enhanced the Banach contraction principle either by generalizing the domain [24,25,26,27] or by taking more general contractive conditions on mappings [28,29,30]. Further, several fixed point results were obtained by generalizing the concept of metric space [31]. For other new fixed point results and their applications, see [32,33,34].
The idea of a b-metric space was given by Czerwik [35]. This opened a new door for researchers and they published several research papers of fixed point theory (see, e.g., [35,36,37,38]). Kamran et al. [39] and Ali et al. [40] introduced F-contraction mappings in the framework of b metric spaces. They proved several fixed point results and applied their results to solve Fredholm and Volterra integral equations, respectively. In 2014, Chifu et al. [41] proved some results for multivalued fractals by using ciric type contractive conditions. Secelean [42] considered the generalized iterated function systems, defined on product of metric spaces to improve some fixed point results. Dung et al. [43] revised the results of Nazir et al. [37,44] by adding a commutativity assumption on the maps. Inspired by their work, we attempt to extend their results to find the multifractals using ciric type generalized multivalued G-contraction mappings in the framework of Hausdorff b-metric spaces.
The structure of our paper is divided into five sections. Section 2 is dedicated to some basic definitions and results concerning b-metric spaces and IFS. Section 3 deals with the notion of generalized multi-iterated function systems (GMIFS) in Hausdorff b-metric spaces. Moreover, some results regarding the existence and uniqueness of attractors (multifractals) are obtained. We derive collage theorem in Section 4. In Section 5, we conclude our findings. The results obtained by us may be further generalized and extended.

2. Preliminaries

Definition 1
([35]). Consider a nonempty set Y and let s R , where s 1 . A function d : Y × Y R + is called a b-metric if following axioms are satisfied:
(b1) 
d ( p , q ) = 0 if and only if p = q ;
(b2) 
d ( p , q ) = d ( q , p ) ; and
(b3) 
d ( p , r ) s [ d ( p , q ) + d ( q , r ) ] (triangle inequality).
The pair ( Y , d ) is said to be a b-metric space.
Remark 1.
For s = 1 , the b-metric space can be reduced in metric space. This shows that every metric space is a b-metric space, but in general the converse is not true (see [35,45,46]).
Remark 2.
In general, every metric is a continuous functional in both variables while a b-metric need not posses this property, i.e., a b-metric space need not be continuous (see Example 2, [47]).
Example 1
([35]). Consider a space L p [ 0 , 1 ] of all real functions y ( u ) , u [ 0 , 1 ] and 0 < p < 1 such that 0 1 | y ( u ) | p d u < , together with a metric defined by
d ( y , z ) = 0 1 | y ( u ) z ( u ) | p d u 1 p y , z L p [ 0 , 1 ] ,
then this space is not a metric space but it is a b-metric space with s = 2 1 p .
Definition 2
([35,45]). A sequence { a n } n N in a b-metric space ( U , d ) is:
(i) 
Convergent iff for each ϵ > 0 and n ( ϵ ) N there exists a U such that d ( a n , a ) < ϵ . i.e., d ( a n , a ) 0 as n + . Here, a is the limit of the sequence and can be written as lim n + a n = a .
(ii) 
Cauchy iff for each ϵ > 0 there is some n ( ϵ ) N for which d ( a n , a m ) < ϵ n , m n ( ϵ ) i.e., d ( a n , a m ) 0 as n , m + .
Definition 3
([35]). Let ( U , d ) be a b-metric space. Then, a subset K of U is:
(a) 
Closed iff each sequence { a n } n N of elements of K has a limit, e.g. a, then a K . (i.e., K = K ¯ )
(b) 
Compact iff every sequence in K has a convergent subsequence in K.
Definition 4
([35]). A complete b-metric space ( U , d ) is a b-metric space in which each Cauchy sequence is convergent in U.
Definition 5
([44]). Let ( U , d ) be a metric space and C ( U ) be the family of all nonempty compact subsets of U. Then, for all L , M C ( U ) , the Hausdorff metric is defined by
H d ( L , M ) = max sup l L d ( l , M ) , sup m M d ( m , L ) ,
where d ( l , M ) = inf d ( l , m ) : m M . The pair ( C ( U ) , H d ) is said to be Hausdorff metric space and also known as a Fractal space (see [19]).
Definition 6
([19]). The Hausdorff metric space ( C ( U ) , H d ) is complete iff ( U , d ) is complete. Analogously, ( C ( U ) , H d ) becomes a complete Hausdorff b-metric space iff ( U , d ) is a complete b-metric space.
Definition 7
([48]). Consider a family G of all the mappings of the form G : R + R satisfying the following axioms:
(G1) 
G is strictly increasing mapping, i.e., u , v R + , u < v implies that G ( u ) < G ( v ) ;
(G2) 
inf G = , i.e., if u n R + is a sequence, then lim n u n = 0 and lim n G ( u n ) = both are equivalent.
(G3) 
There exists δ ( 0 , 1 ) for which lim u 0 + u δ G ( u ) = 0 .
G-contraction is a self map g on U, if there exists τ > 0 for which following holds:
τ + G ( d ( g ( u ) , g ( v ) ) ) G ( d ( u , v ) ) u , v U , g ( u ) g ( v ) .
Further, from ( G 1 ) together with Equation (2), we have
d ( g ( u ) , g ( v ) ) < d ( u , v ) , u , v U , g ( u ) g ( v ) .
This shows that every G-contraction is contractive and, therefore, continuous.
Lemma 1.
Let ( U i , d i ) be b-metric spaces for i = 1 , 2 , , N . Let ( C ( U i ) , H d i ) be corresponding Hausdorff b-metric spaces. For P i , Q i , R i , S i C ( U i ) , i = 1 , 2 , , N , following hold:
(a) 
Q i R i sup p i P i d i ( p i , R i ) sup p i P i d i ( p i , Q i ) .
(b) 
sup x i P i Q i d i ( x i , R i ) = max { sup p i P i d i ( p i , R i ) , sup q i Q i d ( q i , R i ) } .
(c) 
H d i ( P i Q i , R i S i ) max { H d i ( P i , R i ) , H d i ( Q i , S i ) } .
Definition 8
(see [49]). Let ( U i , d i ) be metric spaces, where i I (a finite indexed set). Then, the product space is the space D = i I U i containing all I-tuples { U i } i I . Consider a metric ρ : D R defined as ρ ( y i , z i ) = sup i I d i ( y i , z i ) . Now, let I = 1 , 2 , , N , then
ρ ( y i , z i ) = sup i = 1 , 2 , , N d i ( y i , z i ) y i , z i D ,
where y i = ( y 1 , y 2 , , y N ) , z i = ( z 1 , z 2 , , z N ) and y i , z i i I U i for i = 1 , 2 , , N . Then, ( D , ρ ) is a metric space with product metric ρ .
Definition 9
([42]). Let ρ be a product metric on D , then a mapping g : D D , where D = i I U i , is considered as a generalized multivalued G-contraction if there is a mapping G G and τ > 0 for which
τ + G ( ρ ( g ( y i ) , g ( z i ) ) ) G ( sup i = 1 , 2 , , N d i ( y i , z i ) ) ,
for all y i = ( y 1 , y 2 , , y N ) , z i = ( z 1 , y 2 , , z N ) D and g ( y i ) g ( z i ) for i = 1 , 2 , 3 , , N .
Remark 3.
From Equation (5), we have
G ( ρ ( g ( y i ) , g ( z i ) ) ) < G ( sup i = 1 , 2 , , N d i ( y i , z i ) ) .
Now, using ( G 1 ) , we obtain
ρ ( g ( y i ) , g ( z i ) ) < sup i = 1 , 2 , , N d i ( y i , z i ) ,
for all y i = ( y 1 , y 2 , , y N ) , z i = ( z 1 , z 2 , , z N ) D and g ( y i ) g ( z i ) for 1 i N . Thus, every generalized multivalued G-contraction on a product space is contractive and hence continuous.
Definition 10
([50]). Let ( U , ρ ) be a product metric space on U = i I U i , i = 1 , 2 , , N . Consider the family C ( U ) of all compact subsets of U , then the multifractal space ( C ( U ) , H ρ ) with metric H ρ is defined as
H ρ ( P , Q ) = max i = 1 , 2 , , N { H d i ( P i , Q i ) } ,
where P = ( P 1 , P 2 , , P N ) , Q = ( Q 1 , Q 2 , , Q N ) C ( U ) and H d i is the Hausdorff distance between P i and Q i for i = 1 , 2 , , N .
Lemma 2
([51]). The metric space ( C ( U ) , H ρ ) is a complete metric space if ( C ( U i ) , H d i ) for each i = 1 , 2 , , N are complete metric spaces.
Definition 11
([52]). Let ( U i , d i ) , i = 1 , 2 , , N be complete metric spaces and t i j k : U j U i with k = 1 , 2 , , l i j , i , j = 1 , 2 , , N be contraction mappings having contractivity factors r i j k , then multi-iterated function system (MIFS) is defined by
{ U j , j = 1 , 2 , , N ; t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } ,
having contractive factor as r, where r = max { r i j k , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } .
Definition 12
([52]). Assume that ( U i , d i ) , i = 1 , 2 , , N are complete metric spaces and { U j , j = 1 , 2 , , N ; t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } is an MIFS. Then, the Multi-Hutchinson–Barnsley (MHB) operator of MIFS is a function F : C ( U ) C ( U ) defined by
F ( S ) = i = 1 N j = 1 N k = 1 l i j t i j k ( A i ) , S C ( U ) .
Lemma 3.
Let ( U i , d i ) , i = 1 , 2 , , N be N complete metric spaces and { U j , j = 1 , 2 , , N ; t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } be an MIFS. Then, MHB operator F is a contraction mapping on ( C ( U ) , H ρ ) .
Theorem 1
([52]). Consider N complete metric spaces ( U i , d i ) , i = 1 , 2 , , N and { U j ; j = 1 , 2 , , N , t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } be an MIFS. Then, there exists unique compact invariant set (multi-attractor or fractal) S of MIFS such that S C ( U ) of HB operator F .
Throughout this paper, we consider b-metric spaces ( U i , d i ) in such a way that b-metric is continuous functional on U i × U i for i = 1 , 2 , , N and ( C ( U i ) , H d i ) , i = 1 , 2 , , N are corresponding Hausdorff b-metric spaces such that b-metric is continuous functional on C ( U i ) × C ( U i ) .

3. Main Results

Now, we obtain multifractals (attractors) for commutative self mappings defined on complete Hausdorff b-metric spaces.
Theorem 2.
The metric space ( C ( U ) , H ρ ) is a complete b-metric space iff ( C ( U i ) , H d i ) are complete b-metric spaces for each i = 1 , 2 , , N .
Proof. 
Let ( C ( U i ) , H d i ) , i = 1 , 2 , , N be complete b-metric spaces. Suppose that P n is a Cauchy sequence in ( C ( U ) , H ρ ) , then by definition of a Cauchy sequence, we have for each ϵ > 0 , there exists n ( ϵ ) N such that
H ρ ( P n , P m ) < ϵ , n , m > n ( ϵ ) ,
where P n = ( P 1 n , P 2 n , , P N n ) , P m = ( P 1 m , P 2 m , , P N m ) and P n , P m C ( U ) .
H ρ ( ( P 1 n , P 2 n , , P N n ) , ( P 1 m , P 2 m , , P N m ) ) < ϵ , n , m > n ( ϵ ) max { H d i ( P i n , P i m ) } < ϵ , f o r i = 1 , 2 , , N a n d n , m > n ( ϵ ) H d i ( P i n , P i m ) < ϵ , n , m > n ( ϵ ) , i = 1 , 2 , , N .
Thus, { P i n } n = 0 is a Cauchy sequence in C ( U i ) . Now, for i = 1 , 2 , , N , ( C ( U i ) , H d i ) are complete b-metric spaces, then there exists P i C ( U i ) such that H d i ( P i n , P i ) 0 as n . This gives H ρ ( P n , P ) 0 as n , where P n = P i n = ( P 1 n , P 2 n , , P N n ) and P = P i = ( P 1 , P 2 , , P N ) . This proves that ( C ( U ) , H ρ ) is a complete b-metric space.
By reversing the above process, we can show that ( C ( U i ) , H d i ) are complete b-metric spaces for each i = 1 , 2 , , N . □
Theorem 3.
Let ( U i , d i ) be b-metric spaces for i = 1 , 2 , , N and ( C ( U i ) , H d i ) be the corresponding Hausdorff b-metric spaces. Let t i j k : U j U i , k = 1 , 2 , , l i j , i = j = 1 , 2 , , N be commutative generalized multivalued G-contractions, then following hold:
(1) 
t i j k maps elements of C ( U i ) to elements in C ( U i ) .
(2) 
If t i j k ( P i ) = { t i j k ( p i ) ; p i P i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } for any P i C ( U i ) , then the mapping t i j k : C ( U j ) C ( U i ) , k = 1 , 2 , , l i j ; i , j = 1 , 2 , , N is a generalized multivalued G-contraction on ( C ( U i ) , H d i ) .
Proof. 
(1) The mapping t i j k is continuous being generalized multivalued G-contraction and under a continuous mapping the image of a compact set is compact. Therefore, we have
P i C ( U i ) t i j k ( P i ) C ( U i ) .
(2) Let P i , Q i C ( U i ) . As t i j k : U j U i is a generalized multivalued G-contraction, we have
0 < d i ( t i j k ( p i ) , t i j k ( q i ) ) < d i ( p i , q i ) p i P i , q i Q i .
Then, using Equation (7), we have
d i ( t i j k ( p i ) , t i j k ( Q i ) ) = inf q i Q i d i ( t i j k ( p i ) , t i j k ( q i ) ) < inf q i Q i d i ( p i , q i ) = d i ( p i , Q i ) ,
and
d i ( t i j k ( q i ) , t i j k ( P i ) ) = inf p i P i d i ( t i j k ( q i ) , t i j k ( p i ) ) < inf p i P i d i ( q i , p i ) = d i ( q i , P i ) .
Now, consider
H d i ( t i j k ( P i ) , t i j k ( Q i ) ) = max { sup p i P i d i ( t i j k ( p i ) , t i j k ( Q i ) ) , sup q i Q i d i ( t i j k ( q i ) , t i j k ( P i ) ) } .
Using Equations (8) and (9), the above equation reduces to
H d i ( t i j k ( P i ) , t i j k ( Q i ) ) < max { sup p i P i d i ( p i , Q i ) , sup q i Q i d i ( q i , P i ) } = H d i ( P i , Q i )
H d i ( t i j k ( P i ) , t i j k ( Q i ) ) < H d i ( P i , Q i ) .
Since G is strictly increasing, we have
G ( H d i ( t i j k ( P i ) , t i j k ( Q i ) ) ) < G ( H d i ( P i , Q i ) ) .
For some τ > 0 , Equation (11) becomes
τ + G ( H d i ( t i j k ( P i ) , t i j k ( Q i ) ) ) G ( H d i ( P i , Q i ) ) .
Hence, the mapping t i j k : C ( U j ) C ( U i ) is a generalized multivalued G-contraction on ( C ( U i ) , H d i ) .
Theorem 4.
Assume that ( C ( U i ) , H d i ) , i = 1 , 2 , , N are complete Hausdorff b-metric spaces and { U j , j = 1 , 2 , , N ; t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } is a finite family of commutative generalized multivalued G-contractions. Then, the generalized multi-Hutchinson–Burnsley (GMHB) operator F : C ( U ) C ( U ) defined by
F ( S ) = i = 1 N j = 1 N k = 1 l i j t i j k ( S j ) , S C ( U ) ,
is a generalized multivalued G-contraction on C ( U ) .
Proof. 
Let P , Q C ( U ) , where P = ( P 1 , P 2 , , P N ) and Q = ( Q 1 , Q 2 , , Q N ) then using Equation (12), we observe
τ + G ( H ρ ( F ( P ) , F ( Q ) ) ) = τ + G H ρ i = 1 N j = 1 N k = 1 l i j t i j k ( P j ) , i = 1 N j = 1 N k = 1 l i j t i j k ( Q j ) f o r P j , Q j C ( U j )
= τ + G max i = 1 , 2 , , N H d i j = 1 N k = 1 l i j t i j k ( P j ) , j = 1 N k = 1 l i j t i j k ( Q j ) f o r P j , Q j C ( U j )
= τ + G max i = 1 , 2 , , N max j = 1 , 2 , , N H d i j ( k = 1 l i j t i j k ( P j ) , k = 1 l i j t i j k ( Q j ) ) f o r P j , Q j C ( U j ) .
By using Lemma 1, we have
τ + G ( H ρ ( F ( P ) , F ( Q ) ) ) τ + G max i = 1 , 2 , , N max j = 1 , 2 , , N max k = 1 , 2 , , l i j H d i j k ( t i j k ( P j ) , t i j k ( Q j ) .
From Theorem 3, we obtain
τ + G ( H ρ ( F ( P ) , F ( Q ) ) ) < τ + G max i = 1 , 2 , , N max j = 1 , 2 , , N max k = 1 , 2 , , l i j H d i j k ( P j , Q j ) f o r P j , Q j C ( U j )
= τ + G max i = 1 , 2 , , N max j = 1 , 2 , , N H d i j ( P j , Q j ) f o r P j , Q j C ( U j )
τ + G max i = 1 , 2 , , N H d i ( P i , Q i ) f o r P i , Q i C ( U i )
G H ρ ( P , Q )
τ + G ( H ρ ( F ( P ) , F ( Q ) ) ) G H ρ ( P , Q ) f o r P , Q C ( U ) .
Hence, the generalized multi-Hutchinson Burnsley (GMHB) operator F : C ( U ) C ( U ) is a generalized multivalued G-contraction on C ( U ) . □
Definition 13.
Let ( C ( U i ) , H d i ) , i = 1 , 2 , , N be Hausdorff b-metric spaces. Then, the mapping F : C ( U ) C ( U ) is a ciric type generalized multivalued G-contraction if for P , Q C ( U ) , G G and τ > 0 the following satisfies:
τ + G ( H ρ ( F ( P ) , F ( Q ) ) ) F ( W F ( P , Q ) ) ,
where
W F ( P , Q ) = max H ρ ( P , Q ) , H ρ ( P , F ( P ) ) , H ρ ( Q , F ( Q ) ) , H ρ ( P , F ( Q ) ) + H ρ ( Q , F ( P ) ) 2 s , H ρ ( F 2 ( P ) , F ( P ) ) , H ρ ( F 2 ( P ) , Q ) , H ρ ( F 2 ( P ) , F ( Q ) ) .
Definition 14.
Let ( C ( U i ) , H d i ) , i = 1 , 2 , , N be Hausdorff b-metric spaces and t i j k : U j U i with k = 1 , 2 , , l i j , i , j = 1 , 2 , , N be commutative ciric type generalized multivalued G-contraction mappings, then ciric type generalized multi-iterated function system (CGMIFS) is expressed as
{ U j , j = 1 , 2 , , N ; t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } .
Theorem 5.
Let ( C ( U i ) , H d i ) , i = 1 , 2 , , N be complete Hausdorff b-metric spaces and { U j ; j = 1 , 2 , , N , t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } be a CGMIFS, where the mappings t i j k are commutative mappings. Then, the mapping F : C ( U ) C ( U ) defined by
F ( S ) = i = 1 N j = 1 N k = 1 l i j t i j k ( S j ) ,
where S = S 1 , S 2 , , S N C ( U ) , is a ciric type generalized multi-Hutchinson–Barnsley (CGMHB) operator.
Proof. 
The result holds by using Theorem 4 together with generalized multivalued G-contraction property ( G 1 ) .
Definition 15.
A nonempty family S * C ( U ) of compact sets is said to be multi-attractor with respect to GMIFS if and only if S * = F ( S * ) where S * = S i = S 1 , S 2 , , S N C ( U ) , i.e., S * is the fixed point of associated generalized multi-Hutchinson–Barnsley (GMHB) operator F .
Theorem 6.
Let ( C ( U i ) , H d i ) for i = 1 , 2 , , N be complete Hausdorff b-metric spaces and { U j , j = 1 , 2 , , N ; t i j k : U j U i , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } be a CGMIFS and F : C ( U ) C ( U ) be CGMHB operator. Then, there exists unique attractor S * C ( U ) , i.e.,
S * = F ( S * ) = i = 1 N j = 1 N k = 1 l i j t i j k ( S j * ) , S * C ( U ) ,
where S * = ( S 1 * , S 2 * , , S N * ) C ( U ) .
In addition, the sequence { V 0 , F ( V 0 ) , F 2 ( V 0 ) , } of compact sets for each initial family V 0 C ( U ) converges to a unique attractor S * of CGMHB operator F .
Proof. 
To prove the existence of an attractor S * , let us consider V 0 C ( U ) , where V 0 = ( V 1 0 , V 2 0 , , V N 0 ) . If H ρ ( V m , F ( V m ) ) = H d i ( V i m , V i m + 1 ) = H d i ( V i m , F ( V i m ) ) = 0 for i = 1 , 2 , , N and m N , then V i m = F ( V i m ) i.e., V m = F ( V m ) . Then, X * = V m is an attractor of F , which completes the proof. Thus, let us suppose that H ρ ( V k , F ( V k ) ) > 0 k N . Then from Equation (13), we have
τ + G ( H ρ ( V k + 1 , V k + 2 ) ) = τ + G ( H ρ ( F ( V k ) , F ( V k + 1 ) ) ) G ( W F ( V k , V k + 1 ) ) = G ( W F ( V i k , V i k + 1 ) ) , i = 1 , 2 , , N .
τ + G ( H ρ ( V k + 1 , V k + 2 ) ) G ( W F ( V i k , V i k + 1 ) ) , i = 1 , 2 , , N ,
where
W F ( V i k , V i k + 1 ) = max H d i ( V i k , V i k + 1 ) , H d i ( V i k , F ( V i k ) ) , H d i ( V i k + 1 , F ( V i k + 1 ) ) , H d i ( V i k , F ( V i k + 1 ) ) + H d i ( V i k + 1 , F ( V i k ) ) 2 s , H d i ( F 2 ( V i k ) , F ( V i k ) ) , H d i ( F 2 ( V i k ) , V i k + 1 ) , H d i ( F 2 ( V i k ) , F ( V i k + 1 ) ) = max H d i ( V i k , V i k + 1 ) , H d i ( V i k , V i k + 1 ) , H d i ( V i k + 1 , V i k + 2 ) , H d i ( V i k , V i k + 2 ) + H d i ( V i k + 1 , V i k + 1 ) 2 s , H d i ( V i k + 2 , V i k + 1 ) , H d i ( V i k + 2 , V i k + 1 ) , H d i ( V i k + 2 , V i k + 2 ) .
Thus,
W F ( V i k , V i k + 1 ) = max { H d i ( V i k , V i k + 1 ) , H d i ( V i k + 1 , V i k + 2 ) } .
If W F ( V i k , V i k + 1 ) = H d i ( V i k + 1 , V i k + 2 ) , then from Equation (17),
F ( H d i ( V i k + 1 , V i k + 2 ) ) G ( H d i ( V i k + 1 , V i k + 2 ) ) τ .
This gives
τ 0 ,
which is a contradiction, since τ > 0 .
Therefore, we have W T ( V i k , V i k + 1 ) = H d i ( V i k , V i k + 1 ) .
Now, using Equation (17), we have
G ( H d i ( V i k + 1 , V i k + 2 ) ) G ( H d i ( V i k , V i k + 1 ) ) τ
G ( H d i ( V i k + 1 , V i k + 2 ) ) < G ( H d i ( V i k , V i k + 1 ) ) .
From Equation (20) together with ( G 1 ) ,we have
H d i ( V i k + 1 , V i k + 2 ) < H d i ( V i k , V i k + 1 ) , k N
H d i ( V i k , V i k + 1 ) < H d i ( V i k 1 , V i k ) i = 1 , 2 , , N a n d k N .
Therefore, { H d i ( V i k , V i k + 1 ) } k N is a non-negative decreasing sequence and hence convergent.
Now,
G ( H d i ( V i k , V i k + 1 ) ) G ( H d i ( V i k 1 , V i k ) ) τ
G ( H d i ( V i k 2 , V i k 1 ) ) 2 τ
G ( H d i ( V i 0 , V i 1 ) ) n τ
G ( H d i ( V i k , V i k + 1 ) ) G ( H d i ( V i 0 , V i 1 ) ) n τ ,
which gives lim k G ( H d i ( V i k , V i k + 1 ) ) = and using ( G 2 ) , we have lim k H d i ( V i k , V i k + 1 ) ) = 0 . Thus, we have
lim k H d i ( V i k , V i k + 1 ) ) = lim k H d i ( V i k , F ( V i k ) ) = 0 .
Now, we have to prove that { V i k } k = 1 is a Cauchy sequence. On the contrary, suppose that there exists ϵ > 0 and two sequences { α i m } m = 1 and { β i m } m = 1 such that
α i m > β i m > m , H d i ( V i α i m , V i β i m ) ϵ a n d H d i ( V i α i m 1 , V i β i m ) < ϵ ,
for all i = 1 , 2 , , N and m N .
Now, using Equation (24) together with triangular inequality of a b-metric space, we have
ϵ H d i ( V i α i m , V i β i m ) s { H d i ( V i α i m , V i α i m 1 ) + H d i ( V i α i m 1 , V i β i m ) }
s H d i ( V i α i m , V i α i m 1 ) + s ϵ .
Then, from Equation (23), we get
ϵ lim m sup H d i ( V i α i m , V i β i m ) s ϵ .
Again, by using triangle inequality of a b-metric space, we have
ϵ H d i ( V i α i m , V i β i m ) s { H d i ( V i α i m , V i β i m + 1 ) + H d i ( V i β i m + 1 , V i β i m ) } .
Furthermore,
H d i ( V i α i m , V i β i m + 1 ) s { H d i ( V i α i m , V i β i m ) + H d i ( V i β i m , V i β i m + 1 ) } .
Using Equations (23) and (25) in Equation (27), we have
lim m H d i ( V i α i m , V i β i m + 1 ) s 2 ϵ .
In addition, together with Equations (23) and (26), Equation (28) becomes
ϵ s 1 s lim m sup H d i ( V i α i m , V i β i m ) lim m sup H d i ( V i α i m , V i β i m + 1 ) s 2 ϵ
ϵ s lim m sup H d i ( V i α i m , V i β i m + 1 ) s 2 ϵ .
Again, using the same process, we have
ϵ s lim m sup H d i ( V i α i m + 1 , V i β i m ) s 2 ϵ .
Consider,
H d i ( V i α i m , V i β i m + 1 ) s { H d i ( V i α i m , V i α i m + 1 ) + H d i ( V i α i m + 1 , V i β i m + 1 ) } .
Using Equation (23) in Equation (31), we have
lim m sup H d i ( V i α i m , V i β i m + 1 ) s lim m sup H d i ( V i α i m + 1 , V i β i m + 1 ) .
Using Equations (29) and (32) becomes
ϵ s 2 1 s lim m sup H d i ( V i α i m , V i β i m + 1 ) lim m sup H d i ( V i α i m + 1 , V i β i m + 1 )
ϵ s 2 lim m sup H d i ( V i α i m + 1 , V i β i m + 1 ) .
Consider,
H d i ( V i α i m + 1 , V i β i m + 1 ) s { H d i ( V i α i m + 1 , V i β i m ) + H d i ( V i β i m , V i β i m + 1 ) }
s 2 { H d i ( V i α i m + 1 , V i α i m ) + H d i ( V i α i m , V i β i m ) }
+ s H d i ( V i β i m , V i β i m + 1 ) .
Using Equations (23) and (25), we obtain
lim m sup H d i ( V i α i m + 1 , V i β i m + 1 ) s 3 ϵ .
Now, from Equations (33) and (34), we have
ϵ s 2 lim m sup H d i ( V i α i m + 1 , V i β i m + 1 ) s 3 ϵ .
Thus, from Equations (23) and (24), we can select m 1 N in such a way that
H d i ( V i α i m , F ( V i α i m ) ) < ϵ < H d i ( V i α i m , V i β i m ) , m m 1 .
Therefore, for all m m 1 , we have
G ( H d i ( V i α i m + 1 , V i β i m + 1 ) ) G ( W F ( V i α i m , V i β i m ) ) τ ( H d i ( V i α i m , V i β i m ) ) .
Using ( G 1 ) together with Equation (36), we have
H d i ( V i α i m + 1 , V i β i m + 1 ) < W F ( V i α i m , V i β i m ) = max H d i ( V i α i m , V i β i m ) , H d i ( V i α i m , F ( V i α i m ) ) , H d i ( V i β i m , F ( V i β i m ) ) , H d i ( V i α i m , F ( V i β i m ) ) + H d i ( V i β i m , F ( V i α i m ) ) 2 s , H d i ( F 2 ( V i α i m , F ( V i α i m ) ) , H d i ( F 2 ( V i α i m ) , V i β i m ) , H d i ( F 2 ( V i α i m ) , F ( V i β i m ) ) = max H d i ( V i α i m , V i β i m ) , H d i ( V i α i m , V i α i m + 1 ) , H d i ( V i β i m , V i β i m + 1 ) , H d i ( V i α i m , V i β i m + 1 ) ) + H d i ( V i β i m , V i α i m + 1 ) 2 s , H d i ( V i α i m + 2 , V i α i m + 1 ) , H d i ( V i α i m + 2 , V i β i m ) , H d i ( V i α i m + 2 , V i β i m + 1 ) .
Thus, we have
H d i ( V i α i m + 1 , V i β i m + 1 ) < W F ( V i α i m , V i β i m ) = max H d i ( V i α i m , V i β i m ) , H d i ( V i α i m , V i α i m + 1 ) , H d i ( V i β i m , V i β i m + 1 ) , H d i ( V i α i m , V i β i m + 1 ) ) + H d i ( V i β i m , V i α i m + 1 ) 2 s , H d i ( V i α i m + 2 , V i α i m + 1 ) , s { H d i ( V i α i m + 2 , V i α i m + 1 ) + H d i ( V i α i m + 1 , V i β i m ) } , s { H d i ( V i α i m + 2 , V i α i m + 1 ) + H d i ( V i α i m + 1 , V i β i m + 1 ) } .
Now, taking limit supremum as m on each side of Equation (37) and using Equations (23), (25) and (28), respectively, we obtain
ϵ lim m sup W F ( V i α i m , V i β i m ) = max { s ϵ , 0 , 0 , s 2 ϵ + s 2 ϵ 2 s , 0 , s ( 0 + s 2 ϵ ) , s ( 0 + s ϵ ) } s 3 ϵ .
ϵ lim m sup W F ( V i α i m , V i β i m ) s 3 ϵ .
Using the same argument, we can prove that
ϵ lim m inf W F ( V i α i m , V i β i m ) s 3 ϵ .
Now, taking limit supremum as m in Equation (36) and using Equations (25), (33), (35), (38) and (39), respectively, we have
G ( s 3 ϵ ) = G ( s 5 ϵ s 2 ) G ( lim m sup H d i ( V i α i m + 1 , V i β i m + 1 ) )
G ( lim m sup W F ( V i α i m , V i β i m ) ) τ .
This gives
G ( s 3 ϵ ) G ( s 3 ϵ ) τ .
This implies that τ < 0 , which is a contradiction. Thus, our supposition is wrong. Hence, { V i k } k = 1 is a Cauchy sequence in C ( U i ) , i.e., { V k } k = 1 is a Cauchy sequence in C ( U ) . Since ( C ( U ) , H ρ ) is complete, the sequence { V k } k = 1 converges to S * as k for some S * C ( U ) . Thus, the sequence { V 0 , F ( V 0 ) , F 2 ( V 0 ) , } of compact sets converges to S * , where S * = S i * .
Now, we claim that S * is an attractor of F . Arguing the contrary, we suppose that S * is not the attractor of F . Then, H ρ ( S * , F ( S * ) ) 0 , i.e., H d i ( S i * , F ( S i * ) ) 0 , where S * = S 1 * , S 2 * , , S N * .
Then,
τ + G ( H d i ( V i k + 1 , F ( S i * ) ) ) = τ + G ( H d i ( F ( V i k ) , F ( V i * ) ) )
G ( W F ( V i k , S i * ) ) .
Thus,
τ + G ( H d i ( V i k + 1 , F ( S i * ) ) ) G ( W F ( V i k , S i * ) ) ,
where
W F ( V i k , X i * ) = max H d i ( V i k , S i * ) , H d i ( V i k , F ( V i k ) ) , H d i ( S i * , F ( S i * ) ) , H d i ( V i k , F ( S i * ) ) + H d i ( S i * , F ( V i k ) ) 2 s , H d i ( F 2 ( V i k ) , F ( V i k ) ) , H d i ( F 2 ( V i k ) , S i * ) , H d i ( F 2 ( V i k ) , F ( S i * ) ) = max H d i ( V i k , S i * ) , H d i ( V i k , V i k + 1 ) , H d i ( S i * , F ( S i * ) ) , H d i ( V i k , F ( S i * ) ) + H d i ( S i * , V i k + 1 ) 2 s , H d i ( V i k + 2 , V i k + 1 ) , H d i ( V i k + 2 , S i * ) , H d i ( V i k + 2 , F ( S i * ) ) .
We have following possibilities:
Case I : If W F ( V i k , S i * ) = H d i ( V i k , S i * ) , then taking limit infimum as m in Equation (41), we have
τ + G ( H d i ( S i * , F ( S i * ) ) ) G ( H d i ( S i * , S i * ) ) ,
i.e.,
τ + G ( H d i ( S i * , S i * ) ) G ( H d i ( S i * , S i * ) ) ,
which is a contradiction, since τ > 0 .
Case II : If W F ( V i k , S i * ) = H d i ( V i k , V i k + 1 ) , then by taking limit infimum as m in Equation (41), we have
τ + G ( H d i ( S i * , F ( S i * ) ) ) G ( H d i ( S i * , S i * ) ) ,
i.e.,
τ + G ( H d i ( S i * , S i * ) ) G ( H d i ( S i * , S i * ) ) ,
a contradiction.
Case III : If W F ( V i k , S i * ) = H d i ( S i * , F ( S i * ) ) , then Equation (41) reduces to
τ + G ( H d i ( S i * , F ( S i * ) ) ) G ( H d i ( F ( S i * ) , S i * ) ) ,
again a contradiction, since τ > 0 .
Case IV : If
W F ( V i k , S i * ) = H d i ( V i k , F ( S i * ) ) + H d i ( S i * , V i k + 1 ) 2 s ,
then Equation (41) becomes
τ + G ( H d i ( S i * , F ( S i * ) ) ) G H d i ( S i * , F ( S i * ) ) + H d i ( S i * , S i * ) ) 2 s = G H d i ( S i * , F ( S i * ) ) 2 s ,
which is not possible, since G is strictly increasing map.
Case V : If W F ( V i k , S i * ) = H d i ( V i k + 2 , V i k + 1 ) , then from Equation (41), we have
τ + G ( H d i ( S i * , F ( S i * ) ) ) G ( H d i ( S i * , S i * ) ) ,
again a contradiction.
Case VI : If W F ( V i k , S i * ) = H d i ( V i k + 2 , S i * ) , then
τ + G ( H d i ( S i * , F ( S i * ) ) ) G ( H d i ( S i * , S i * ) ) ,
again a contradiction.
Case VII : If W F ( V i k , S i * ) = H d i ( V i k + 2 , F ( S i * ) ) , using this in Equation (41), we have
τ + G ( H d i ( S i * , F ( S i * ) ) ) G ( H d i ( S i * , F ( S i * ) ) ,
which is not possible.
Thus, our supposition is wrong. This gives, H d i ( U i * , F ( S i * ) ) = 0 , i.e., F ( S i * ) = S i * for i = 1 , 2 , , N . Hence, S i * i.e., S * is an attractor of F .
Now, we prove the uniqueness of attractor S * of F . Indeed, let S * and R * be two attractors of F with H ρ ( S * , R * ) 0 . Then, using the definition of Ciric type generalized multivalued G-contraction F , we have
τ + G ( H ρ ( S * , R * ) ) = τ + G ( H ρ ( F ( S * ) , F ( R * ) ) )
G ( W F ( S * , R * ) )
τ + G ( H ρ ( S * , R * ) ) G ( W F ( S * , R * ) ) ,
where
W F ( S * , R * ) = max H ρ ( S * , R * ) , H ρ ( S * , F ( S * ) ) , H ρ ( R * , F ( R * ) ) , H ρ ( S * , F ( R * ) ) + H ρ ( R * , F ( S * ) ) 2 s , H ρ ( F 2 ( S * ) , F ( S * ) ) , H ρ ( F 2 ( S * ) , R * ) , H ρ ( F 2 ( S * ) , F ( R * ) ) = max H ρ ( S * , R * ) , H ρ ( S * , S * ) , H ρ ( R * , R * ) , H ρ ( S * , R * ) + H ρ ( R * , S * ) 2 s , H ρ ( S * , S * ) , H ρ ( S * , R * ) , H ρ ( S * , R * ) = H ρ ( S * , R * )
τ + G ( H ρ ( S * , R * ) ) G ( H ρ ( S * , R * ) ) ,
which is not possible, since τ > 0 . This gives that H ρ ( S * , R * ) = 0 . i . e . , S * = R * .
Hence, F has a unique attractor S * .
Remark 4.
If we take j = 1 , 2 , , N , i = 1 in Theorem 6, then the result of Chifu et al. ( Theorem 3.4, [41]) can be obtained.
Remark 5.
If we use generalized multivalued G-contraction t i j k instead of ciric type generalized multivalued G-contraction in Theorem 6 and take j=1,2,...,N, i=1, then the result of Secelean (Theorem 3.1, [42]) can be obtained. In addition, one can generalize his result using Ciric type generalized multivalued G-contraction.
Remark 6.
Our Theorems 3, 4 and 6 extend the results of Dung et al. [43], which are the revision of the results obtained by Nazir et al. (respectively, Theorems 9, 10 and 15, [37]) by taking N = 1 .

4. Applications

The image of objects found in the nature can be reconstructed by using a set of functions. This set of functions is known as iterated function system (IFS). Collage theorem (see [19,53]) enables us to approximate an image by using IFS having a specific attractor that will construct the required image, no matter what initial set is to be taken. With the help of collage theorem, one can solve inverse problems of reconstructing the fractal objects. Barnsley proved the collage theorem for Hausdorff metric space, but here we generalize this concept to a Hausdorff b-metric space, which is more general than Hausdorff metric space and obtain the collage theorem as follows:
Theorem 7.
(Collage Theorem). Suppose that ( C ( U i ) , H d i ) are complete Hausdorff b-metric spaces for i = 1 , 2 , , N . Let ( C ( U ) , H ρ ) be a Hausdorff b-metric space with Hausdorff metric ρ and { U j , j = 1 , 2 , , N ; t i j l : U j U i , l = 1 , 2 , , k i j , i , j = 1 , 2 , , N } be multi-iterated function systems (MIFS) having contractive factor r, where r = max { r i j k , k = 1 , 2 , , l i j , i , j = 1 , 2 , , N } and 0 r < 1 . If F : C ( U ) C ( U ) is contractive operator with contractive factor r and V C ( U ) , then
H ρ ( V , S * ) 1 1 s r H ρ ( V , F ( V ) ) ,
where S * C ( U ) is an attractor of F .
Proof. 
Using triangular condition of a b-metric space, we have
H d i ( V i , F n ( V i ) ) s { H d i ( V i , F ( V i ) ) + H d i ( F ( V i ) , F n ( V i ) ) }
s H d i ( V i , F ( V i ) ) + s 2 { H d i ( F ( V i ) , F 2 ( V i ) ) + H d i ( F 2 ( V i ) , F n ( V i ) ) }
s H d i ( V i , F ( V i ) ) + s 2 H d i ( F ( V i ) , F 2 ( V i ) )
+ s 3 H d i ( F 2 ( V i ) , F 3 ( V i ) ) + + s n H d i ( F n 1 ( V i ) , F n ( V i ) ) .
This gives
H d i ( V i , F n ( V i ) ) s H d i ( V i , F ( V i ) ) + s 2 H d i ( F ( V i ) , F 2 ( V i ) ) + + s n H d i ( F n 1 ( V i ) , F n ( V i ) ) .
Since F is a contraction operator with contractive factor r, Equation (44) reduces to
H d i ( V i , F n ( V i ) ) ( s + s 2 r + s 3 r 2 + + s n r n 1 ) H d i ( V i , F ( V i ) )
= s ( 1 s r n 1 ) 1 s r H d i ( V i , F ( V i ) ) , f o r s r < 1
H d i ( V i , F n ( V i ) ) s ( 1 s r n 1 ) 1 s r H d i ( V i , F ( V i ) ) , f o r s r < 1 .
Taking the limit as n , we have
H d i ( V i , S * ) 1 1 s r H d i ( V i , F ( V i ) ) , f o r i = 1 , 2 , , N .
Now,
max i = 1 , 2 , , N H d i ( V i , S * ) max i = 1 , 2 , , N ( 1 1 s r ) H d i ( V i , F ( V i ) )
H ρ ( V , S * ) 1 1 s r H ρ ( V , F ( V ) ) .
This theorem describes that, if the Hausdorff distance between idealized fractal and collage of the image is small, then the distance of the attractor of our IFS from the fractal will be small. It guarantees that an IFS has a unique attractor. □

5. Conclusions

In this article, a methodology for constructing multi-attractors in multifractal spaces is presented. This methodology not only states complex results, but also one can adopt this methodology to construct attractors or multi-attractors on Hausdorff b-metric spaces. In Section 4, we derive collage theorem for multi-Hutchinson Barnsley operator in Hausdorff b-metric space. Collage theorem can be applied to find a suitable IFS for obtaining desired attractor and solving inverse problem for constructing fractal objects (see Section 5, [53]). With the help of Theorem 7, by choosing suitable contractions, one can generate fractals or multifractals. In addition, for further research, our results give rise to interesting questions and generalizations to construct multifractals (attractors) either by generalizing spaces or contraction mappings. Moreover, we attempt to obtain multifractals analytically with the help of ciric type generalized multivalued G-contractions; however, construction of multifractals is still an open question.

Author Contributions

Conceptualization, S.K. and J.C.; methodology, R.C. and J.C.; validation, S.K., J.C. and C.H.; formal analysis, S.K. and J.C.; investigation, S.K., J.C. and C.H.; writing-original draft preparation, S.K., R.C. and J.C.; writing-review and editing, C.H.; supervision, J.C. and C.H.; project administration, J.C. and C.H.; funding acquisition, J.C. and C.H.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11971076, 51839002).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wang, J.; Huang, C.; Huang, L. Discontinuity-induced limit cycles in a general planar piecewise linear system of saddlCfocus type. Nonlinear Anal. Hybrid Syst. 2019, 33, 162–178. [Google Scholar] [CrossRef]
  2. Chen, T.; Huang, L.; Yu, P.; Huang, W. Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar] [CrossRef]
  3. Tan, Y.; Zhang, M. Global exponential stability of periodic solutions in a nonsmooth model of hematopoiesis with time-varying delays. Math. Methods Appl. Sci. 2017, 40, 5986–5995. [Google Scholar] [CrossRef]
  4. Yang, X.; Wen, S.; Liu, Z.; Li, C.; Huang, C. Dynamic Properties of Foreign Exchange Complex Network. Mathematics 2019, 7, 832. [Google Scholar] [CrossRef]
  5. Li, X.; Liu, Z.; Li, J.; Tisdell, C. Existence and controllability for nonlinear fractional control systems with damping in hilbert spaces. Acta Math. Sci. 2019, 39, 229–242. [Google Scholar]
  6. Hu, H.; Yuan, X.; Huang, L.; Huang, C. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 2019, 16, 5729–5749. [Google Scholar] [CrossRef]
  7. Tan, Y.; Huang, C.; Sun, B.; Wang, T. Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 2018, 458, 1115–1130. [Google Scholar] [CrossRef]
  8. Huang, C.; Long, X.; HUnag, L.; Fu, S. Stability of almost periodic Nicholson’s blowflies model involving patch structure and mortality terms. Can. Math. Bull. 2019. [Google Scholar] [CrossRef]
  9. Huang, C.; Zhang, H.; Cao, J.; Hu, H. Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator. Int. J. Bifurc. Chaos 2019, 29, 1950091. [Google Scholar] [CrossRef]
  10. Huang, C.; Qiao, Y.; Huang, L. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, 2018, 186. [Google Scholar] [CrossRef]
  11. Rajchakit, G.; Pratap, A.; Raja, R.; Cao, J.; Alzabut, J.; Huang, C. Hybrid Control Scheme for Projective Lag Synchronization of Riemann-Liouville Sense Fractional Order Memristive BAM Neural Networks with Mixed Delays. Mathematics 2019, 7, 759. [Google Scholar] [CrossRef]
  12. Huang, C.; Su, R.; Cao, J.; Xiao, S. Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators. Math. Comput. Simul. 2019. [Google Scholar] [CrossRef]
  13. Song, C.; Fei, S.; Cao, J.; Huang, C. Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control. Mathematics 2019, 7, 599. [Google Scholar] [CrossRef]
  14. Huang, C.; Cao, J.; Wang, P. Attractor and Boundedness of Switched Stochastic Cohen-Grossberg Neural Networks. Discret. Dyn. Nat. Soc. 2016, 2016. [Google Scholar] [CrossRef]
  15. Long, X.; Gong, S. New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl. Math. Lett. 2019. [Google Scholar] [CrossRef]
  16. Huang, C.; Liu, B. New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 2019, 325, 283–287. [Google Scholar] [CrossRef]
  17. Huang, C.; Liu, B.; Tian, X.; Yang, L.; Zhang, X. Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions. Neural Process. Lett. 2019, 49, 625–641. [Google Scholar] [CrossRef]
  18. Hutchinson, J.E. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
  19. Barnsley, M.F. Fractals Everywhere; Academic Press: New York, NJ, USA, 1988. [Google Scholar]
  20. Peitgen, H.O.; Jurgens, H.; Saupe, D. Chaos and Fractals, New Frontiers of Science; Springer: New York, NY, USA, 2004. [Google Scholar]
  21. Andres, J.; Fiser, J.; Gabor, G.; Lesniak, K. Multivalued fractals. Chaos Solitons Fractals 2005, 24, 665–700. [Google Scholar] [CrossRef]
  22. Andres, J.; Fiser, J. Metric and topological multivalued fractals. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2004, 14, 1277–1289. [Google Scholar] [CrossRef]
  23. Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations int egrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  24. Jeribi, A.; Krichen, B. Nonlinear functional analysis in Banach spaces and Banach algebras. Fixed point theory under weak topology for nonlinear operators and block operator matrices with applications. In Monographs and Research Notes in Mathematics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
  25. Ilic, D.; Abbas, M.; Nazir, T. Iterative approximation of fixed points of Presic operators on partial metric spaces. Math. Nachr. 2015, 288, 1634–1646. [Google Scholar] [CrossRef]
  26. Arandjelovic, I.; Kadelburg, Z.; Radenovi, S. Boyd -Wong - type common fixed point results in cone metric spaces. Appl. Math. Comput. 2011, 217, 7167–7171. [Google Scholar] [CrossRef]
  27. Kadelburg, Z.; Radenovic, S.; Rakocevic, V. Remarks on ‘Quasi-contraction on a cone metric space’. Appl. Math. Lett. 2009, 22, 1674–1679. [Google Scholar] [CrossRef]
  28. Singh, S.L.; Bhatnagar, C.; Mishra, S.N. Stability of iterative procedures for multivalued maps in metric spaces. Demonstr. Math. 2005, 37, 905–916. [Google Scholar]
  29. Huang, C.; Yang, Z.; Yi, T.; Zou, X. On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 2014, 256, 2101–2114. [Google Scholar] [CrossRef]
  30. Huang, C.; Zhang, H.; Huang, L. Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear 433 density-dependent mortality term. Commun. Pure Appl. Anal. 2019, 18, 3337–3349. [Google Scholar] [CrossRef]
  31. Dhage, B.C. Generalised metric spaces and topological structure- I. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 2000, 46, 3–24. [Google Scholar]
  32. Nandal, A.; Chugh, R.; Postolache, M. Iteration Process for Fixed Point Problems and Zeros of Maximal Monotone Operator. Symmetry 2019, 11, 655. [Google Scholar] [CrossRef]
  33. Postolache, M.; Nandal, A.; Chugh, R. Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space. Mathematics 2019, 7, 773. [Google Scholar] [CrossRef]
  34. Nandal, A.; Chugh, R. On Zeros of Accretive Operators with Application to the Convex Feasibility Problem. U.P.B. Sci. Bull. Ser. A 2019, 81, 95–106. [Google Scholar]
  35. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti. Sem. Mat. Univ. Modena. 1998, 46, 263–276. [Google Scholar]
  36. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal., Gos. Ped. Inst. Unianowsk 1989, 30, 26–37. [Google Scholar]
  37. Nazir, T.; Silvestrov, S.; Qi, X. Fractals of Generalized F-Hutchinson Operator in b-Metric Spaces. J. Oper. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
  38. Berinde, V. Generalized Contractions in Quasimetric Spaces. In Seminar on Fixed Point Theory; Babeș-Bolyai University: Cluj-Napoca, Romania, 1993; pp. 3–9. [Google Scholar]
  39. Kamaran, T.; Postolache, M.; Usman Ali, M.; Ali, S.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 7, 18–27. [Google Scholar]
  40. Usman Ali, M.; Kamranb, T.; Postolachec, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 2017, 22, 17–30. [Google Scholar]
  41. Chifu, C.; Petrusel, G. Fixed Points for Multivalued Contractions in b- Metric Spaces with Applications to Fractals. Taiwanese J. Math. 2014, 18, 1365–1375. [Google Scholar] [CrossRef]
  42. Secelean, N.A. Generalized F-iterated function systems on product of metric spaces. J. Fixed Point Theory Appl. 2015, 17, 575–595. [Google Scholar] [CrossRef]
  43. Dung, N.V.; Petrusel, A. On iterated function systems consisting of Kannan maps, Reich maps, Chatterjea type maps, and related results. J. Fixed Point Theory Appl. 2017, 19, 2271–2285. [Google Scholar] [CrossRef]
  44. Nazir, T.; Silvestrov, S.; Abbas, M. Fractals of generalized F-Hutchinson operator. Waves, Wavelets Fractals 2016, 2, 29–40. [Google Scholar] [CrossRef]
  45. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
  46. Heinonen, J. Lectures on Analysis on Metric Spaces; Springer: New York, NY, USA, 2001. [Google Scholar]
  47. Hussain, N.; Parvaneh, V.; Roshan, J.R.; Kadelburg, Z. Fixed points of cyclic (ψ,ϕ,L,A,B)-contractive mappings in ordered b-metric spaces with applications. Fixed Point Theory Appl. 2013, 256, 1–18. [Google Scholar]
  48. Wardowski, D.; Dung, N.V. Fixed points of F-contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
  49. Altun, I.; Minak, G.; Dag, H. Multivalued F-Contractions on Complete metric Spaces. J. Nonlinear Convex Anal. 2015, 16, 659–666. [Google Scholar] [CrossRef]
  50. Al-Saidi, N.M.G.; Mohammed, J.A. A New Approach for Computing Multi-Fractal Dimension Based on Escape Time Method. Int. J. Math. Anal. 2012, 6, 761–773. [Google Scholar]
  51. Searcoid, M.O. Metric Spaces; Springer: London, UK, 2007. [Google Scholar]
  52. Prasad, B.; Katiyar, K. Multi Fuzzy Fractal Theorems in Fuzzy Metric Spaces. Fuzzy Inf. Eng. 2017, 9, 225–236. [Google Scholar] [CrossRef] [Green Version]
  53. Jacques Belair, J.; Dubuc, S. Fractal Geometry and Analysis; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]

Share and Cite

MDPI and ACS Style

Kumari, S.; Chugh, R.; Cao, J.; Huang, C. Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications. Mathematics 2019, 7, 967. https://doi.org/10.3390/math7100967

AMA Style

Kumari S, Chugh R, Cao J, Huang C. Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications. Mathematics. 2019; 7(10):967. https://doi.org/10.3390/math7100967

Chicago/Turabian Style

Kumari, Sudesh, Renu Chugh, Jinde Cao, and Chuangxia Huang. 2019. "Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications" Mathematics 7, no. 10: 967. https://doi.org/10.3390/math7100967

APA Style

Kumari, S., Chugh, R., Cao, J., & Huang, C. (2019). Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications. Mathematics, 7(10), 967. https://doi.org/10.3390/math7100967

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop