Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications
Abstract
:1. Introduction
2. Preliminaries
- (b1)
- if and only if ;
- (b2)
- and
- (b3)
- (triangle inequality).
- (i)
- Convergent iff for each and there exists such that . i.e., as . Here, a is the limit of the sequence and can be written as
- (ii)
- Cauchy iff for each there is some for which i.e., as
- (a)
- Closed iff each sequence of elements of K has a limit, e.g. a, then . (i.e., )
- (b)
- Compact iff every sequence in K has a convergent subsequence in K.
- (G1)
- G is strictly increasing mapping, i.e., implies that
- (G2)
- , i.e., if is a sequence, then and both are equivalent.
- (G3)
- There exists for which .
- (a)
- (b)
- .
- (c)
- .
3. Main Results
- (1)
- maps elements of to elements in .
- (2)
- If for any , then the mapping is a generalized multivalued G-contraction on .
4. Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Huang, C.; Huang, L. Discontinuity-induced limit cycles in a general planar piecewise linear system of saddlCfocus type. Nonlinear Anal. Hybrid Syst. 2019, 33, 162–178. [Google Scholar] [CrossRef]
- Chen, T.; Huang, L.; Yu, P.; Huang, W. Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal. Real World Appl. 2018, 41, 82–106. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, M. Global exponential stability of periodic solutions in a nonsmooth model of hematopoiesis with time-varying delays. Math. Methods Appl. Sci. 2017, 40, 5986–5995. [Google Scholar] [CrossRef]
- Yang, X.; Wen, S.; Liu, Z.; Li, C.; Huang, C. Dynamic Properties of Foreign Exchange Complex Network. Mathematics 2019, 7, 832. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, J.; Tisdell, C. Existence and controllability for nonlinear fractional control systems with damping in hilbert spaces. Acta Math. Sci. 2019, 39, 229–242. [Google Scholar]
- Hu, H.; Yuan, X.; Huang, L.; Huang, C. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 2019, 16, 5729–5749. [Google Scholar] [CrossRef]
- Tan, Y.; Huang, C.; Sun, B.; Wang, T. Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 2018, 458, 1115–1130. [Google Scholar] [CrossRef]
- Huang, C.; Long, X.; HUnag, L.; Fu, S. Stability of almost periodic Nicholson’s blowflies model involving patch structure and mortality terms. Can. Math. Bull. 2019. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Cao, J.; Hu, H. Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator. Int. J. Bifurc. Chaos 2019, 29, 1950091. [Google Scholar] [CrossRef]
- Huang, C.; Qiao, Y.; Huang, L. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, 2018, 186. [Google Scholar] [CrossRef]
- Rajchakit, G.; Pratap, A.; Raja, R.; Cao, J.; Alzabut, J.; Huang, C. Hybrid Control Scheme for Projective Lag Synchronization of Riemann-Liouville Sense Fractional Order Memristive BAM Neural Networks with Mixed Delays. Mathematics 2019, 7, 759. [Google Scholar] [CrossRef]
- Huang, C.; Su, R.; Cao, J.; Xiao, S. Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators. Math. Comput. Simul. 2019. [Google Scholar] [CrossRef]
- Song, C.; Fei, S.; Cao, J.; Huang, C. Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control. Mathematics 2019, 7, 599. [Google Scholar] [CrossRef]
- Huang, C.; Cao, J.; Wang, P. Attractor and Boundedness of Switched Stochastic Cohen-Grossberg Neural Networks. Discret. Dyn. Nat. Soc. 2016, 2016. [Google Scholar] [CrossRef]
- Long, X.; Gong, S. New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl. Math. Lett. 2019. [Google Scholar] [CrossRef]
- Huang, C.; Liu, B. New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 2019, 325, 283–287. [Google Scholar] [CrossRef]
- Huang, C.; Liu, B.; Tian, X.; Yang, L.; Zhang, X. Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions. Neural Process. Lett. 2019, 49, 625–641. [Google Scholar] [CrossRef]
- Hutchinson, J.E. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractals Everywhere; Academic Press: New York, NJ, USA, 1988. [Google Scholar]
- Peitgen, H.O.; Jurgens, H.; Saupe, D. Chaos and Fractals, New Frontiers of Science; Springer: New York, NY, USA, 2004. [Google Scholar]
- Andres, J.; Fiser, J.; Gabor, G.; Lesniak, K. Multivalued fractals. Chaos Solitons Fractals 2005, 24, 665–700. [Google Scholar] [CrossRef]
- Andres, J.; Fiser, J. Metric and topological multivalued fractals. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2004, 14, 1277–1289. [Google Scholar] [CrossRef]
- Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations int egrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Jeribi, A.; Krichen, B. Nonlinear functional analysis in Banach spaces and Banach algebras. Fixed point theory under weak topology for nonlinear operators and block operator matrices with applications. In Monographs and Research Notes in Mathematics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ilic, D.; Abbas, M.; Nazir, T. Iterative approximation of fixed points of Presic operators on partial metric spaces. Math. Nachr. 2015, 288, 1634–1646. [Google Scholar] [CrossRef]
- Arandjelovic, I.; Kadelburg, Z.; Radenovi, S. Boyd -Wong - type common fixed point results in cone metric spaces. Appl. Math. Comput. 2011, 217, 7167–7171. [Google Scholar] [CrossRef]
- Kadelburg, Z.; Radenovic, S.; Rakocevic, V. Remarks on ‘Quasi-contraction on a cone metric space’. Appl. Math. Lett. 2009, 22, 1674–1679. [Google Scholar] [CrossRef]
- Singh, S.L.; Bhatnagar, C.; Mishra, S.N. Stability of iterative procedures for multivalued maps in metric spaces. Demonstr. Math. 2005, 37, 905–916. [Google Scholar]
- Huang, C.; Yang, Z.; Yi, T.; Zou, X. On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 2014, 256, 2101–2114. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Huang, L. Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear 433 density-dependent mortality term. Commun. Pure Appl. Anal. 2019, 18, 3337–3349. [Google Scholar] [CrossRef]
- Dhage, B.C. Generalised metric spaces and topological structure- I. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 2000, 46, 3–24. [Google Scholar]
- Nandal, A.; Chugh, R.; Postolache, M. Iteration Process for Fixed Point Problems and Zeros of Maximal Monotone Operator. Symmetry 2019, 11, 655. [Google Scholar] [CrossRef]
- Postolache, M.; Nandal, A.; Chugh, R. Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space. Mathematics 2019, 7, 773. [Google Scholar] [CrossRef]
- Nandal, A.; Chugh, R. On Zeros of Accretive Operators with Application to the Convex Feasibility Problem. U.P.B. Sci. Bull. Ser. A 2019, 81, 95–106. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti. Sem. Mat. Univ. Modena. 1998, 46, 263–276. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal., Gos. Ped. Inst. Unianowsk 1989, 30, 26–37. [Google Scholar]
- Nazir, T.; Silvestrov, S.; Qi, X. Fractals of Generalized F-Hutchinson Operator in b-Metric Spaces. J. Oper. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V. Generalized Contractions in Quasimetric Spaces. In Seminar on Fixed Point Theory; Babeș-Bolyai University: Cluj-Napoca, Romania, 1993; pp. 3–9. [Google Scholar]
- Kamaran, T.; Postolache, M.; Usman Ali, M.; Ali, S.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 7, 18–27. [Google Scholar]
- Usman Ali, M.; Kamranb, T.; Postolachec, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 2017, 22, 17–30. [Google Scholar]
- Chifu, C.; Petrusel, G. Fixed Points for Multivalued Contractions in b- Metric Spaces with Applications to Fractals. Taiwanese J. Math. 2014, 18, 1365–1375. [Google Scholar] [CrossRef]
- Secelean, N.A. Generalized F-iterated function systems on product of metric spaces. J. Fixed Point Theory Appl. 2015, 17, 575–595. [Google Scholar] [CrossRef]
- Dung, N.V.; Petrusel, A. On iterated function systems consisting of Kannan maps, Reich maps, Chatterjea type maps, and related results. J. Fixed Point Theory Appl. 2017, 19, 2271–2285. [Google Scholar] [CrossRef]
- Nazir, T.; Silvestrov, S.; Abbas, M. Fractals of generalized F-Hutchinson operator. Waves, Wavelets Fractals 2016, 2, 29–40. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
- Heinonen, J. Lectures on Analysis on Metric Spaces; Springer: New York, NY, USA, 2001. [Google Scholar]
- Hussain, N.; Parvaneh, V.; Roshan, J.R.; Kadelburg, Z. Fixed points of cyclic (ψ,ϕ,L,A,B)-contractive mappings in ordered b-metric spaces with applications. Fixed Point Theory Appl. 2013, 256, 1–18. [Google Scholar]
- Wardowski, D.; Dung, N.V. Fixed points of F-contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
- Altun, I.; Minak, G.; Dag, H. Multivalued F-Contractions on Complete metric Spaces. J. Nonlinear Convex Anal. 2015, 16, 659–666. [Google Scholar] [CrossRef]
- Al-Saidi, N.M.G.; Mohammed, J.A. A New Approach for Computing Multi-Fractal Dimension Based on Escape Time Method. Int. J. Math. Anal. 2012, 6, 761–773. [Google Scholar]
- Searcoid, M.O. Metric Spaces; Springer: London, UK, 2007. [Google Scholar]
- Prasad, B.; Katiyar, K. Multi Fuzzy Fractal Theorems in Fuzzy Metric Spaces. Fuzzy Inf. Eng. 2017, 9, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Jacques Belair, J.; Dubuc, S. Fractal Geometry and Analysis; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, S.; Chugh, R.; Cao, J.; Huang, C. Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications. Mathematics 2019, 7, 967. https://doi.org/10.3390/math7100967
Kumari S, Chugh R, Cao J, Huang C. Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications. Mathematics. 2019; 7(10):967. https://doi.org/10.3390/math7100967
Chicago/Turabian StyleKumari, Sudesh, Renu Chugh, Jinde Cao, and Chuangxia Huang. 2019. "Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications" Mathematics 7, no. 10: 967. https://doi.org/10.3390/math7100967
APA StyleKumari, S., Chugh, R., Cao, J., & Huang, C. (2019). Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications. Mathematics, 7(10), 967. https://doi.org/10.3390/math7100967