On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. The Upper Semicontinuous Case
- is -Carathéodory, where is compact and convex};
- there exist a function and a continuous nondecreasing function such that
3.2. The Lipschitz Case
- is such that is measurable for each where ;
- for almost all and with and for almost all .
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics 2004; Springer: Berlin, Germany, 2010. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton– zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Song, G. Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses. Fixed Point Theory Appl. 2012, 2012, 200. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K. New existence results for differential inclusions involving Langevin equation with two indices. J. Nonlinear Convex Anal. 2013, 14, 437–450. [Google Scholar]
- Muensawat, T.; Ntouyas, S.K.; Tariboon, J. Systems of generalized Sturm-Liouville and Langevin fractional differential equations. Adv. Differ. Equ. 2017, 2017, 63. [Google Scholar] [CrossRef] [Green Version]
- Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals 2018, 114, 332–337. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Salem, S. On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders. Adv. Differ. Equ. 2019, 2019, 57. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Srivastava, H.; Ntouyas, K. The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral. Mathematics 2019, 7, 533. [Google Scholar] [CrossRef]
- Katugampola, U.N. New Approach to a generalized fractional integral. Appl. Math. Comput. 2015, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Deimling, K. Multivalued Differential Equations; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Kisielewicz, M. Differential Inclusions and Optimal Control; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Covitz, H.; Nadler, S.B., Jr. Multivalued contraction mappings in generalized metric spaces. ISRAEL J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions; Lecture Notes in Mathematics 580; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaedi, A.; Ahmad, B.; Alghanmi, M.; Ntouyas, S.K. On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem. Mathematics 2019, 7, 1015. https://doi.org/10.3390/math7111015
Alsaedi A, Ahmad B, Alghanmi M, Ntouyas SK. On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem. Mathematics. 2019; 7(11):1015. https://doi.org/10.3390/math7111015
Chicago/Turabian StyleAlsaedi, Ahmed, Bashir Ahmad, Madeaha Alghanmi, and Sotiris K. Ntouyas. 2019. "On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem" Mathematics 7, no. 11: 1015. https://doi.org/10.3390/math7111015
APA StyleAlsaedi, A., Ahmad, B., Alghanmi, M., & Ntouyas, S. K. (2019). On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem. Mathematics, 7(11), 1015. https://doi.org/10.3390/math7111015