Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge
Abstract
:1. Introduction
2. Mathematical Formulation of the Problem
2.1. Mathematical Modeling Analysis
2.2. Application of HAM
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed 1995, 231, 99–106. [Google Scholar]
- Eastman, J.A.; Choi, S.U.S.; Li, S. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhou, J.E.; Tung, S.; Schneider, E.; Xi, S.Q. A review on development of nanofluid preparation and characterization. Powder Technol. 2009, 196, 89–101. [Google Scholar] [CrossRef]
- Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model. J. Nanopart. Res. 2004, 5, 167–171. [Google Scholar] [CrossRef]
- Azizian, R.; Doroodchi, E.; Moghtaderi, B. Influence of controlled aggregation on thermal conductivity of nanofluids. J. Heat Transf. 2016, 138, 43–55. [Google Scholar] [CrossRef]
- Bigdeli, M.B.; Fasano, M.; Cardellini, A.; Chiavazzo, E.; Asinari, P. A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications. Renew. Sustain. Energy Rev. 2016, 60, 1615–1633. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.G. A note on the unsteady boundary layers over a flat plate. Int. J. Non Linear Mech. 2008, 43, 1007–1011. [Google Scholar] [CrossRef]
- Ullah, I.; Shafie, S.; Makinde, O.D.; Khan, I. Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction. Chem. Eng. Sci. 2017, 172, 694–706. [Google Scholar] [CrossRef]
- Awan, S.E.; Khan, Z.A.; Awais, M.; Rehman, S.U.; Raja, M.A.Z. Numerical treatment for hydro-magnetic unsteady channel flow of nanofluid with heat transfer. Results Phys. 2018, 9, 1543–1554. [Google Scholar] [CrossRef]
- Jahan, S.; Sakidin, H.; Nazar, R.; Pop, I. Unsteady flow and heat transfer past a permeable stretching/shrinking sheet in a nanofluid: A revised model with stability and regression analyses. J. Mol. Liq. 2018, 261, 550–564. [Google Scholar] [CrossRef]
- Hayat, T.; Sajjad, R.; Muhammad, T. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial. Results Phys. 2017, 7, 535–543. [Google Scholar] [CrossRef]
- Tian, X.Y.; Li, B.W.; Hu, Z.M. Convective stagnation point flow of a MHD non-Newtonian nanofluid towards a stretching plate. Int. J. Heat Mass Transf. 2018, 127, 768–780. [Google Scholar] [CrossRef]
- Hsiao, K.L. Combined Electrical MHD Heat Transfer Thermal Extrusion System Using Maxwell Fluid with Radiative and Viscous Dissipation Effects. Appl. Therm. Eng. 2017, 112, 1281–1288. [Google Scholar] [CrossRef]
- Babu, M.J.; Sandeep, N. Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Adv. Powder Technol. 2016, 27, 2039–2050. [Google Scholar] [CrossRef]
- Usman, M.; Soomro, F.A.; Haq, R.U.; Wang, W.; Defterli, O. Thermal and velocity slip effects on Casson nanofluid flow over an Inclined permeable stretching cylinder via collocation method. Int. J. Heat Mass Transf. 2018, 122, 1255–1263. [Google Scholar] [CrossRef]
- Abbas, N.; Saleem, S.; Nadeem, S.; Alderremy, A.A.; Khan, A.U. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results Phys. 2018, 9, 1224–1232. [Google Scholar] [CrossRef]
- Ramzan, M.; Chung, J.D.; Ullah, N. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk—A numerical approach. Results Phys. 2017, 7, 3557–3566. [Google Scholar] [CrossRef]
- Seth, G.S.; Mishra, M.K. Analysis of transient flow of MHD nanofluid past a non-linear stretching sheet considering Navier’s slip boundary condition. Adv. Powder Technol. 2017, 28, 375–384. [Google Scholar] [CrossRef]
- Thompson, P.A.; Troian, S.M. A general boundary condition for liquid flow at solid surfaces. Nature 1997, 389, 360–362. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, D.; Zheng, L.C.; Zhang, X.X. Effects of second order velocity slip and nanoparticles migration on flow of Buongiorno nanofluid. Appl. Math. Lett. 2016, 52, 183–191. [Google Scholar] [CrossRef]
- Liu, Q.F.; Zhu, J.; Bandar, B.M.; Zheng, L.C. Hydromagnetic flow and heat transfer with various nanoparticles additives past a wedge with high order velocity slip and temperature jump. Can. J. Phys. 2017, 95, 440–449. [Google Scholar] [CrossRef]
- Sobamowo, M.G.; Jayesimi, L.O.; Waheed, M.A. Magnetohydrodynamic squeezing flow analysis of nanofluid under the effect of slip boundary conditions using variation of parameter method. Karbala Int. J. Mod. Sci. 2018, 4, 107–118. [Google Scholar] [CrossRef]
- Job, V.M.; Gunakala, S.R. Unsteady MHD free convection nanofluid flows within a wavy trapezoidal enclosure with viscous and Joule dissipation effects. Numer. Heat Transf. Appl. 2015, 69, 1–23. [Google Scholar] [CrossRef]
- Liao, S.J. Beyond perturbation: The basic concepts of the homotopy analysis method and its applications. Adv. Mech. 2008, 38, 1–33. [Google Scholar]
- Xie, H.Q.; Fujii, M.; Zhang, X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 2005, 48, 2926–2932. [Google Scholar] [CrossRef]
- Mahalakshmi, T.; Nithyadevi, N.; Oztop, H.F.; Abu-Hamdeh, N. MHD mixed convective heat transfer in a lid-driven enclosure filled with Ag-water nanofluid with center heater. Int. J. Mech. Sci. 2018, 142, 407–419. [Google Scholar] [CrossRef]
- Abdul Hakeem, A.K.; Raja, K.; Ganga, B.; Ganesh, N.V. Nanofluid slip flow through porous medium with elastic deformation and uniform heat source/sink effects. Comput. Therm. Sci. Int. J. 2019, 11, 269–283. [Google Scholar] [CrossRef]
- Rosseland, S. Astrophysik und Atom-Theoretische Grundlagen; Springer: Berlin, Germany, 1931; pp. 41–44. [Google Scholar]
- Kandasamy, R.; Muhaimin, I.; Khamis, A.B. Unsteady Hiemenz flow of Cu-nanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation: Lie group transformation. Int. J. Therm. Sci. 2013, 65, 196–205. [Google Scholar] [CrossRef]
Order | Same hm | Different hm |
---|---|---|
2 | 0.09804597363984649 | 0.10971050115341624 |
4 | 0.01695228455734058 | 0.01987321691368215 |
6 | 0.00149718658281736 | 0.00111284953763120 |
8 | 0.00092006200460696 | 0.00103228583202702 |
10 | 0.00016652968112583 | 0.00023106953667965 |
12 | 0.00028937817232142 | 0.00018686850247371 |
14 | 0.00004625312077364 | 0.00003407739648355 |
16 | 0.00004411186515886 | 0.00003247720532823 |
18 | 0.00004138348805906 | 0.00003498110747688 |
20 | 0.00000913314203849 | 0.00000687359503864 |
Radius | NuxRe−1/2bf | CfRe1/2bf |
---|---|---|
5 | −0.891502 | 1.26755 |
6 | −0.854912 | 1.24286 |
7 | −0.830858 | 1.22730 |
8 | −0.813950 | 1.21633 |
9 | −0.801466 | 1.20772 |
10 | −0.791884 | 1.20219 |
11 | −0.784313 | 1.19735 |
12 | −0.778192 | 1.19350 |
Thickness | NuxRe−1/2bf | CfRe1/2bf |
---|---|---|
0 | −0.721204 | 1.15796 |
1 | −0.747387 | 1.17419 |
2 | −0.778192 | 1.1935 |
3 | −0.81395 | 1.21633 |
4 | −0.854912 | 1.24286 |
5 | −0.901176 | 1.27453 |
6 | −0.952644 | 1.31082 |
7 | −1.00893 | 1.35419 |
8 | −1.06935 | 1.40348 |
9 | −1.13284 | 1.46137 |
10 | −1.19796 | 1.52895 |
Parameter | Value | NuxRe−1/2bf | CfRe1/2bf |
---|---|---|---|
0 | −0.739726 | 1.279140 | |
0.5 | −0.737890 | 0.987631 | |
1 | −0.736706 | 0.810298 | |
1.5 | −0.735953 | 0.678731 | |
2 | −0.735382 | 0.586453 | |
−1 | −0.736851 | 0.829446 | |
−0.5 | −0.739202 | 1.184720 | |
0 | −0.744404 | 1.996120 | |
0.3 | −0.752506 | 3.308360 | |
0.5 | −0.767527 | 5.848600 | |
0 | −1.060260 | 0.944702 | |
1 | −0.471135 | 0.944367 | |
2 | −0.407875 | 0.944307 | |
3 | −0.302604 | 0.944202 | |
−2 | −0.210557 | 0.918785 | |
−1 | −0.372054 | 0.918769 | |
−0.5 | −0.603914 | 0.918768 | |
0 | −1.839810 | 0.916633 | |
0.5 | 2.405830 | 0.914590 | |
1 | 0.681384 | 0.918776 | |
2 | 0.294131 | 0.918839 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Cao, J. Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge. Mathematics 2019, 7, 1043. https://doi.org/10.3390/math7111043
Zhu J, Cao J. Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge. Mathematics. 2019; 7(11):1043. https://doi.org/10.3390/math7111043
Chicago/Turabian StyleZhu, Jing, and Jiahui Cao. 2019. "Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge" Mathematics 7, no. 11: 1043. https://doi.org/10.3390/math7111043
APA StyleZhu, J., & Cao, J. (2019). Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge. Mathematics, 7(11), 1043. https://doi.org/10.3390/math7111043