Absence of Global Solutions for a Fractional in Time and Space Shallow-Water System
Abstract
:1. Introduction
2. Preliminaries
3. A Key Lemma
4. Non-Existence of Global in Time Solutions for Problem (1)–(2)–(3)
- (i)
- , .
- (ii)
- , , , .
- (iii)
- .
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mitidieri, E.; Pokhozhaev, S.I. A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Proc. Steklov Inst. Math. 2011, 234, 1–362. [Google Scholar]
- Korpusov, M.O.; Yushkov, E.V. Solution blowup for systems of shallow-water equations. Theor. Math. Phys. 2013, 177, 1505–1514. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Nauka: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Rozhdestvenskij, B.L.; Yanenko, N.N. Systems of Quasilinear Equations and their Applications to Gas Dynamics Series. In Translations of Mathematical Monographs, American Mathematical Society, 2nd ed.; AMS: Providence, RI, USA, 1983; p. 676. [Google Scholar]
- Arshad, S.; Sohail, A.; Maqbool, K. Nonlinear shallow water waves: A fractional order approach. Alex. Eng. J. 2016, 55, 525–532. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK, 2014. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 1999. [Google Scholar]
- Uchaikin, V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin, Germany, 2013. [Google Scholar]
- Khater, M.M.; Kumar, D. New exact solutions for the time fractional coupled Boussinesq-Burger equation and approximate long water wave equation in shallow water. J. Ocean Eng. Sci. 2017, 2, 223–228. [Google Scholar] [CrossRef]
- Kumar, S. A numerical study for solution of time fractional nonlinear shallow water equation in oceans. Z. Naturforsch. A 2013, 68a, 1–7. [Google Scholar] [CrossRef]
- Kumar, D.; Darvishi, M.T.; Joardar, A.K. Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water. Opt. Quantum Electron. 2018, 50, 1–17. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. New double-periodic solutions of fractional Drinfeld-Sokolov-Wilson equation in shallow water waves. Nonlinear Dyn. 2017, 88, 1869–1882. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, Y.; Lian, H.; Sun, S. On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1175–1187. [Google Scholar] [CrossRef]
- Hu, J.; Xin, J.; Lu, H. The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 2011, 62, 1510–1521. [Google Scholar] [CrossRef]
- Kirane, M.; Malik, S.A. The profile of blowing-up solutions to a nonlinear system of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2010, 73, 3723–3736. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Tao, T. Finite time blowup for an averaged three-dimensional Navier-Stokes equation. J. Am. Math. Soc. 2016, 29, 601–674. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Panin, A.A. Local solvability and blowup of the solution of the Rosenau-Bürgers equation with different boundary conditions. Theor. Math. Phys. 2013, 177, 1361–1376. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jleli, M.; Kirane, M.; Samet, B. Absence of Global Solutions for a Fractional in Time and Space Shallow-Water System. Mathematics 2019, 7, 1127. https://doi.org/10.3390/math7111127
Jleli M, Kirane M, Samet B. Absence of Global Solutions for a Fractional in Time and Space Shallow-Water System. Mathematics. 2019; 7(11):1127. https://doi.org/10.3390/math7111127
Chicago/Turabian StyleJleli, Mohamed, Mokhtar Kirane, and Bessem Samet. 2019. "Absence of Global Solutions for a Fractional in Time and Space Shallow-Water System" Mathematics 7, no. 11: 1127. https://doi.org/10.3390/math7111127
APA StyleJleli, M., Kirane, M., & Samet, B. (2019). Absence of Global Solutions for a Fractional in Time and Space Shallow-Water System. Mathematics, 7(11), 1127. https://doi.org/10.3390/math7111127